CHAPTER
ONE

INTRODUCTION

pySim is a python implementation of various software that helps you with managing subscriber identity cards for cellular networks, so-called SIM cards.

Many Osmocom (Open Source Mobile Communications) projects relate to operating private / custom cellular networks, and provisioning SIM cards for said networks is in many cases a requirement to operate such networks.

To make use of most of pySim’s features, you will need a programmable SIM card, i.e. a card where you are the owner/operator and have sufficient credentials (such as the ADM PIN) in order to write to many if not most of the files on the card.

Such cards are, for example, available from sysmocom, a major contributor to pySim. See https://www.sysmocom.de/products/lab/sysmousim/ for more details.

pySim supports classic GSM SIM cards as well as ETSI UICC with 3GPP USIM and ISIM applications. It is easily extensible, so support for additional files, card applications, etc. can be added easily by any python developer. We do encourage you to submit your contributions to help this collaborative development project.

pySim consists of several parts:

- a python library containing plenty of objects and methods that can be used for writing custom programs interfacing with SIM cards.
- the [new] interactive pySim-shell command line program
- the [legacy] pySim-prog and pySim-read tools

1.1 pySim-shell

pySim-shell is an interactive command line shell for all kind of interactions with SIM cards.

The interactive shell provides command for

- navigating the on-card filesystem hierarchy
- authenticating with PINs such as ADM1
- CHV/PIN management (VERIFY, ENABLE, DISABLE, UNBLOCK)
- decoding of SELECT response (file control parameters)
- reading and writing of files and records in raw, hex-encoded binary format
- for some files where related support has been developed:
 - decoded reading (display file data in JSON format)
 - decoded writing (encode from JSON to binary format, then write)
By means of using the python cmd2 module, various useful features improve usability:

• history of commands (persistent across restarts)
• output re-direction to files on your computer
• output piping through external tools like ‘grep’
• tab completion of commands and SELECT-able files/directories
• interactive help for all commands

1.1.1 Running pySim-shell

pySim-shell has a variety of command line arguments to control

• which transport to use (how to use a reader to talk to the SIM card)
• whether to automatically verify an ADM pin (and in which format)
• whether to execute a start-up script

interactive SIM card shell

 [-modem-baud BAUD] [-osmocon PATH] [-script PATH]
 [-csv FILE] [-card_handler FILE]
 [-a PIN_ADM1 | -A PIN_ADM1_HEX]

Serial Reader

-d, --device Serial Device for SIM access
Default: “/dev/ttyUSB0”

-b, --baud Baud rate used for SIM access
Default: 9600

PC/SC Reader

-p, --pcsc-device PC/SC reader number to use for SIM access

AT Command Modem Reader

--modem-device Serial port of modem for Generic SIM Access (3GPP TS 27.007)
--modem-baud Baud rate used for modem port
Default: 115200
OsmocomBB Reader

--osmocon
Socket path for Calypso (e.g. Motorola C1XX) based reader (via OsmocomBB)

General Options

--script
script with pySim-shell commands to be executed automatically at start-up

--csv
Read card data from CSV file

--card_handler
Use automatic card handling machine

-a, --pin-adm
ADM PIN used for provisioning (overwrites default)

-A, --pin-adm-hex
ADM PIN used for provisioning, as hex string (16 characters long)

1.1.2 cmd2 basics

FIXME

1.1.3 ISO7816 commands

This category of commands relates to commands that originate in the ISO 7861-4 specifications, most of them have a 1:1 resemblance in the specification.

select

The select command is used to select a file, either by its FID, AID or by its symbolic name.

Try select with tab-completion to get a list of all current selectable items:

```
pySIM-shell (MF)> select
2fe2  a0000000871004  EF.ARR  MF
2f00  3f00  ADF.ISIM  EF.DIR
2f05  7f10  ADF.USIM  EF.ICCID
2f06  7f20  DF.GSM  EF.PL
2f08  a0000000871002  DF.TELECOM  EF.UMPC
```

Use select with a specific FID or name to select the new file.

This will

• output the [JSON decoded, if possible] select response
• change the prompt to the newly selected file
• enable any commands specific to the newly-selected file

```
pySIM-shell (MF)> select ADF.USIM
{
   "file_descriptor": {
      "file_descriptor_byte": {
         "shareable": true,
         "file_type": "df",
         "structure": "no_info_given"
      }
   }
```

(continues on next page)
status

The `status` command [re-]obtains the File Control Template of the currently-selected file and print its decoded output.

Example:

```json
pySIM-shell (MF/ADF.ISIM)> status
{
  "file_descriptor": {
    "file_descriptor_byte": {
      "shareable": true,
      "file_type": "df",
      "structure": "no_info_given"
    },
    "record_len": null,
    "num_of_rec": null
  },
  "file_identifier": "ff01",
  "df_name": "A00000000871002FFFFFFFF8907090000",
  "proprietary_information": {
    "uicc_characteristics": "71",
    "available_memory": 101640
  },
  "life_cycle_status_integer": "operational_activated",
  "security_attrib_compact": "00",
  "pin_status_template_do": {
    "ps_do": "70",
    "key_reference": 11
  }
}
```
change_chv

Change PIN code to a new PIN code

```
usage: change_chv [-h] [--pin-nr PIN_NR] pin_code new_pin_code
```

Positional Arguments

- **pin_code**
 - PIN code digits “PIN1” or “PIN2” to get PIN code from external data source

- **new_pin_code**
 - PIN code digits “PIN1” or “PIN2” to get PIN code from external data source

Named Arguments

- **--pin-nr**
 - PUK Number, 1=PIN1, 2=PIN2 or custom value (decimal)

 Default: 1

disable_chv

Disable PIN code using specified PIN code

```
usage: disable_chv [-h] [--pin-nr PIN_NR] pin_code
```

Positional Arguments

- **pin_code**
 - PIN code digits, “PIN1” or “PIN2” to get PIN code from external data source

Named Arguments

- **--pin-nr**
 - PIN Number, 1=PIN1, 2=PIN2 or custom value (decimal)

 Default: 1

enable_chv

Enable PIN code using specified PIN code

```
usage: enable_chv [-h] [--pin-nr PIN_NR] pin_code
```
Positional Arguments

pin_code
PIN code digits, “PIN1” or “PIN2” to get PIN code from external data source

Named Arguments

--pin-nr
PIN Number, 1=PIN1, 2=PIN2 or custom value (decimal)
Default: 1

unblock_chv

Unblock PIN code using specified PUK code

usage: unblock_chv [-h] [--pin-nr PIN_NR] puk_code new_pin_code

Positional Arguments

puk_code
PUK code digits “PUK1” or “PUK2” to get PUK code from external data source

new_pin_code
PIN code digits “PIN1” or “PIN2” to get PIN code from external data source

Named Arguments

--pin-nr
PUK Number, 1=PIN1, 2=PIN2 or custom value (decimal)
Default: 1

verify_chv

Verify (authenticate) using specified CHV (PIN) code, which is how the specifications call it if you authenticate yourself using the specified PIN. There usually is at least PIN1 and PIN2.

usage: verify_chv [-h] [--pin-nr PIN_NR] pin_code

Positional Arguments

pin_code
PIN code digits, “PIN1” or “PIN2” to get PIN code from external data source
Named Arguments

--pin-nr PIN Number, 1=PIN1, 2=PIN2 or custom value (decimal)
 Default: 1

deactivate_file

Deactivate the currently selected file. This used to be called INVALIDATE in TS 11.11.

activate_file

Activate the specified EF. This used to be called REHABILITATE in TS 11.11 for classic SIM. You need to specify the name or FID of the file to activate.

usage: activate_file [-h] NAME

Positional Arguments

NAME File name or FID of file to activate

open_channel

Open a logical channel.

usage: open_channel [-h] chan_nr

Positional Arguments

chan_nr Channel Number
 Default: 0

close_channel

Close a logical channel.

usage: close_channel [-h] chan_nr
Positional Arguments

`chan_nr` Channel Number
Default: 0

suspend_uicc

This command allows you to perform the SUSPEND UICC command on the card. This is a relatively recent power-saving addition to the UICC specifications, allowing for suspend/resume while maintaining state, as opposed to a full power-off (deactivate) and power-on (activate) of the card.

The pySim command just sends that SUSPEND UICC command and doesn’t perform the full related sequence including the electrical power down.

Perform the SUSPEND UICC command. Only supported on some UICC.

```
usage: suspend_uicc [-h] [--min-duration-secs MIN_DURATION_SECS]
                   [--max-duration-secs MAX_DURATION_SECS]
```

Named Arguments

- `--min-duration-secs` Proposed minimum duration of suspension
 Default: 60
- `--max-duration-secs` Proposed maximum duration of suspension
 Default: 86400

1.1.4 pySim commands

Commands in this category are pySim specific; they do not have a 1:1 correspondence to ISO 7816 or 3GPP commands. Mostly they will operate either only on local (in-memory) state, or execute a complex sequence of card-commands.

desc

Display human readable file description for the currently selected file.

dir

Show a listing of files available in currently selected DF or MF

```
```
Named Arguments

--fids Show file identifiers
Default: False

--names Show file names
Default: False

--apps Show applications
Default: False

--all Show all selectable identifiers and names
Default: False

Example:

```
pySIM-shell (MF)> dir
MF
3f00
..  ADF.USIM  DF.SYSTEM  EF.DIR  EF.UMPC
ADF.ARA-M  DF.EIRENE  DF.TELECOM  EF.ICCID  MF
ADF.ISIM  DF.GSM  EF.ARR  EF.PL
14 files
```

export

Export files to script that can be imported back later

```
usage: export [-h] [--filename FILENAME] [--json]
```

Named Arguments

--filename only export specific file

--json export as JSON (less reliable)
Default: False

Please note that export works relative to the current working directory, so if you are in MF, then the export will contain all known files on the card. However, if you are in ADF.ISIM, only files below that ADF will be part of the export.

Furthermore, it is strongly advised to first enter the ADM1 pin (verify_adm) to maximize the chance of having permission to read all/most files.
tree

Display a tree of the card filesystem. It is important to note that this displays a tree of files that might potentially exist (based on the card profile). In order to determine if a given file really exists on a given card, you have to try to select that file.

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tree --help</code></td>
<td>Display a tree of files</td>
</tr>
</tbody>
</table>
Positional Arguments

 script_path path to the script file

Named Arguments

 --halt_on_error stop card handling if an exception occurs
 Default: False
 --tries how many tries before trying the next card
 Default: 2
 --on_stop_action commandline to execute when card handling has stopped
 --pre_card_action commandline to execute before actually talking to the card

echo

Echo (print) a string on the console

 usage: echo [-h] string

Positional Arguments

 string string to echo on the shell

apdu

Send a raw APDU to the card, and print SW + Response. DANGEROUS: pySim-shell will not know any card
state changes, and not continue to work as expected if you e.g. select a different file.

 usage: apdu [-h] APDU

Positional Arguments

 APDU APDU as hex string
1.1.5 Linear Fixed EF commands

These commands become enabled only when your currently selected file is of *Linear Fixed EF* type.

read_record

Read one or multiple records from a record-oriented EF

```
usage: read_record [-h] [--count COUNT] record_nr
```

Positional Arguments

- `record_nr` Number of record to be read

Named Arguments

- `--count` Number of records to be read, beginning at `record_nr`

 Default: 1

read_record_decoded

Read + decode a record from a record-oriented EF

```
usage: read_arr_record [-h] [--oneline] record_nr
```

Positional Arguments

- `record_nr` Number of record to be read

Named Arguments

- `--oneline` No JSON pretty-printing, dump as a single line

 Default: False
read_records

Read all records from a record-oriented EF

```
usage: read_records [-h]
```

read_records_decoded

Read + decode all records from a record-oriented EF

```
usage: read_arr_records [-h] [--oneline]
```

Named Arguments

```
--oneline
   No JSON pretty-printing, dump as a single line
   Default: False
```

update_record

Update (write) data to a record-oriented EF

```
usage: update_record [-h] record_nr data
```

Positional Arguments

```
record_nr
   Number of record to be read

data
   Data bytes (hex format) to write
```

update_record_decoded

Encode + Update (write) data to a record-oriented EF

```
usage: update_record_decoded [-h] [--json-path JSON_PATH] record_nr data
```
Positional Arguments

- record_nr: Number of record to be read
- data: Abstract data (JSON format) to write

Named Arguments

- --json-path: JSON path to modify specific element of record only

edit_record_decoded

Edit the JSON representation of one record in an editor.

usage: edit_record_decoded [-h] record_nr

Positional Arguments

- record_nr: Number of record to be edited

This command will read the selected record, decode it to its JSON representation, save that JSON to a temporary file on your computer, and launch your configured text editor. You may then perform whatever modifications to the JSON representation, save + leave your text editor. Afterwards, the modified JSON will be re-encoded to the binary format, and the result written back to the record on the SIM card. This allows for easy interactive modification of records.

decode_hex

Decode command-line provided hex-string as if it was read from the file.

usage: decode_hex [-h] [--oneline] HEXSTR

Positional Arguments

- HEXSTR: Hex-string of encoded data to decode
Named Arguments

--oneline No JSON pretty-printing, dump as a single line
Default: False

1.1.6 Transparent EF commands

These commands become enabled only when your currently selected file is of Transparent EF type.

read_binary

Read binary data from a transparent EF

usage: read_binary [-h] [--offset OFFSET] [--length LENGTH]

Named Arguments

--offset Byte offset for start of read
Default: 0
--length Number of bytes to read

read_binary_decoded

Read + decode data from a transparent EF

usage: read_binary_decoded [-h] [--oneline]

Named Arguments

--oneline No JSON pretty-printing, dump as a single line
Default: False

update_binary

Update (Write) data of a transparent EF

usage: update_binary [-h] [--offset OFFSET] data
Positional Arguments

data
Data bytes (hex format) to write

Named Arguments

--offset
Byte offset for start of read
Default: 0

update_binary_decoded

Encode + Update (Write) data of a transparent EF

usage: update_binary_decoded [-h] [--json-path JSON_PATH] data

Positional Arguments

data
Abstract data (JSON format) to write

Named Arguments

--json-path
JSON path to modify specific element of file only

In normal operation, update_binary_decoded needs a JSON document representing the entire file contents as input. This can be inconvenient if you want to keep 99% of the content but just toggle one specific parameter. That’s where the JSONpath support comes in handy: You can specify a JSONpath to an element inside the document as well as a new value for that field:

The below example demonstrates this by modifying the ofm field within EF.AD:

```
pySIM-shell (MF/ADF.USIM/EF.AD)> read_binary_decoded
{
    "ms_operation_mode": "normal",
    "specific_facilities": {
        "ofm": true
    },
    "len_of_mnc_in_imsi": 2
}
pySIM-shell (MF/ADF.USIM/EF.AD)> update_binary_decoded --json-path specific_facilities.ofm false
pySIM-shell (MF/ADF.USIM/EF.AD)> read_binary_decoded
{
    "ms_operation_mode": "normal",
    "specific_facilities": {
        "ofm": false
    },
    "len_of_mnc_in_imsi": 2
}
```
edit_binary_decoded

This command will read the selected binary EF, decode it to its JSON representation, save that JSON to a temporary file on your computer, and launch your configured text editor.

You may then perform whatever modifications to the JSON representation, save + leave your text editor.

Afterwards, the modified JSON will be re-encoded to the binary format, and the result written to the SIM card.

This allows for easy interactive modification of file contents.

decode_hex

Decode command-line provided hex-string as if it was read from the file.

```bash
usage: decode_hex [-h] [--oneline] HEXSTR
```

Positional Arguments

- **HEXSTR**
 Hex-string of encoded data to decode

Named Arguments

- **--oneline**
 No JSON pretty-printing, dump as a single line
 Default: False

1.1.7 BER-TLV EF commands

BER-TLV EFs are files that contain BER-TLV structured data. Every file can contain any number of variable-length IEs (DOs). The tag within a BER-TLV EF must be unique within the file.

The commands below become enabled only when your currently selected file is of *BER-TLV EF* type.

retrieve_tags

Retrieve a list of all tags present in the currently selected file.

retrieve_data

Retrieve (Read) data from a BER-TLV EF

```bash
usage: retrieve_data [-h] tag
```
Positional Arguments

tag

BER-TLV Tag of value to retrieve

set_data

Set (Write) data for a given tag in a BER-TLV EF

usage: set_data [-h] tag data

Positional Arguments

tag

BER-TLV Tag of value to set

data

Data bytes (hex format) to write

del_data

Delete data for a given tag in a BER-TLV EF

usage: delete_data [-h] tag

Positional Arguments

tag

BER-TLV Tag of value to set

1.1.8 USIM commands

authenticate

Perform Authentication and Key Agreement (AKA).

usage: authenticate [-h] rand autn

Positional Arguments

rand

Random challenge

autn

Authentication Nonce
terminal_profile

Send a TERMINAL PROFILE command to the card. This is used to inform the card about which optional features the terminal (modem/phone) supports, particularly in the context of SIM Toolkit, Proactive SIM and OTA. You must specify a hex-string with the encoded terminal profile you want to send to the card.

```
usage: terminal_profile [-h] PROFILE
```

Positional Arguments

- **PROFILE**: Hexstring of encoded terminal profile

envelope

Send an ENVELOPE command to the card. This is how a variety of information is communicated from the terminal (modem/phone) to the card, particularly in the context of SIM Toolkit, Proactive SIM and OTA.

```
usage: envelope [-h] PAYLOAD
```

Positional Arguments

- **PAYLOAD**: Hexstring of encoded payload to ENVELOPE

envelope_sms

Send an ENVELOPE(SMS-PP-Download) command to the card. This emulates a terminal (modem/phone) having received a SMS with a PID of ‘SMS for the SIM card’. You can use this command in the context of testing OTA related features without a modem/phone or a cellular network.

```
usage: envelope_sms [-h] TPDU
```

Positional Arguments

- **TPDU**: Hexstring of encoded SMS TPDU
1.1.9 ARA-M commands

The ARA-M commands exist to manage the access rules stored in an ARA-M applet on the card.

ARA-M in the context of SIM cards is primarily used to enable Android UICC Carrier Privileges, please see https://source.android.com/devices/tech/config/uicc for more details on the background.

aram_get_all

Obtain and decode all access rules from the ARA-M applet on the card.

NOTE: if the total size of the access rules exceeds 255 bytes, this command will fail, as it doesn’t yet implement fragmentation/reassembly on rule retrieval. YMMV

```
pySIM-shell (MF/ADF.ARA-M)> aram_get_all
[
  {
    "ResponseAllRefArDO": [
      {
        "RefArDO": [
          {
            "RefDO": [
              {
                "AidRefDO": "ffffffffffffff"
              },
              {
                "DevAppIdRefDO": "e46872f28b350b7e1f140de535c2a8d5804f0be3"
              }
            ]
          }
        ]
      },
      {
        "ArDO": [
          {
            "ApduArDO": {
              "generic_access_rule": "always"
            },
            {
              "PermArDO": {
                "permissions": "00000000000000000000000000000001"
              }
            }
          ]
        }
      }
    ]
  }
]
```
aram_get_config

Perform Config handshake with ARA-M applet: Tell it our version and retrieve its version.
NOTE: Not supported in all ARA-M implementations.

aram_store_ref_ar_do

Perform STORE DATA [Command-Store-REF-AR-DO] to store a (new) access rule.

```
usage: aram_store_ref_ar_do [-h] --device-app-id DEVICE_APP_ID
                 [--aid AID | --aid-empty] [--pkg-ref PKG_REF]
                 [--apdu-never | --apdu-always | --apdu-filter APDU_FILTER]
                 [--nfc-always | --nfc-never]
                 [--android-permissions ANDROID_PERMISSIONS]
```

Named Arguments

--device-app-id Identifies the specific device application that the rule applies to. Hash of Certificate of Application Provider, or UUID. (20/32 hex bytes)

--aid Identifies the specific SE application for which rules are to be stored. Can be a partial AID, containing for example only the RID. (5-16 hex bytes)

--aid-empty No specific SE application, applies to all applications
Default: False

--pkg-ref Full Android Java package name (up to 127 chars ASCII)

--apdu-never APDU access is not allowed
Default: False

--apdu-always APDU access is allowed
Default: False

--apdu-filter APDU filter: 4 byte CLA/INS/P1/P2 followed by 4 byte mask (8 hex bytes)

--nfc-always NFC event access is allowed
Default: False

--nfc-never NFC event access is not allowed
Default: False

--android-permissions Android UICC Carrier Privilege Permissions (8 hex bytes)

For example, to store an Android UICC carrier privilege rule for the SHA1 hash of the certificate used to sign the CoIMS android app of Supreeth Herle (https://github.com/herlesupreeth/CoIMS_Wiki) you can use the following command:

```
pySIM-shell (MF/ADF.ARA-M)> aram_store_ref_ar_do --aid FFFFFFFFFFFFFFFF
--device-app-id E46872F28B350B7E1F140DE535C2A8D5804F0BE3
--android-permissions 0000000000000001
```

1.1. pySim-shell
aram_delete_all

This command will request deletion of all access rules stored within the ARA-M applet. Use it with caution, there is no undo. Any rules later intended must be manually inserted again using `aram_store_ref_ar_do`.

1.1.10 cmd2 settable parameters

`cmd2` has the concept of settable parameters which act a bit like environment variables in an OS-level shell: They can be read and set, and they will influence the behavior somehow.

conserve_write

If enabled, pySim will (when asked to write to a card) always first read the respective file/record and verify if the to-be-written value differs from the current on-card value. If not, the write will be skipped. Writes will only be performed if the new value is different from the current on-card value.

If disabled, pySim will always write irrespective of the current/new value.

json_pretty_print

This parameter determines if generated JSON output should (by default) be pretty-printed (multi-line output with indent level of 4 spaces) or not.

The default value of this parameter is ‘true’.

debug

If enabled, full python back-traces will be displayed in case of exceptions.

apdu_trace

Boolean variable that determines if a hex-dump of the command + response APDU shall be printed.

numeric_path

Boolean variable that determines if path (e.g. in prompt) is displayed with numeric FIDs or string names.

```bash
pySIM-shell (MF/EF.ICCID)> set numeric_path True
numeric_path - was: False
now: True
pySIM-shell (3f00/2fe2)> set numeric_path False
numeric_path - was: True
now: False
pySIM-shell (MF/EF.ICCID)> help set
```
1.2 Legacy tools

legacy tools are the classic *pySim-prog* and *pySim-read* programs that existed long before *pySim-shell*.

These days, you should primarily use *pySim-shell* instead of these legacy tools.

1.2.1 pySim-prog

pySim-prog was the first part of the *pySim* software suite. It started as a tool to write ICCID, IMSI, MSISDN and Ki to very simplistic SIM cards, and was later extended to a variety of other cards. As the number of features supported became no longer bearable to express with command-line arguments, *pySim-shell* was created.

Basic use cases can still use *pySim-prog*.

Program customizable SIMs

Two modes are possible:

- one where you specify every parameter manually:
  ```
  ./pySim-prog.py -n 26C3 -c 49 -x 262 -y 42 -i <IMSI> -s <ICCID>
  ```
- one where they are generated from some minimal set:
  ```
  ./pySim-prog.py -n 26C3 -c 49 -x 262 -y 42 -z <random_string_of_choice> -j <card_num>
  ```

With `<random_string_of_choice>` and `<card_num>`, the software will generate 'predictable' IMSI and ICCID, so make sure you choose them so as not to conflict with anyone. (For example, your name as `<random_string_of_choice>` and 0 1 2 ... for `<card_num>`).

You also need to enter some parameters to select the device:
- `-t TYPE` : type of card (supersim, magicsim, fakemagicssim or try ‘auto’) -d DEV : Serial port device (default /dev/ttyUSB0) -b BAUD : Baudrate (default 9600)

1.2.2 pySim-read

pySim-read allows you to read some data from a SIM card. It will only read some files of the card, and will only read files accessible to a normal user (without any special authentication).

These days, you should use the *export* command of *pySim-shell* instead. It performs a much more comprehensive export of all of the [standard] files that can be found on the card. To get a human-readable decode instead of the raw hex export, you can use *export --json*.

Specifically, *pySim-read* will dump the following:

- MF
- EF.ICCID
- DF.GSM
- EF.IMSI
- EF.GID1
- EF.GID2
- EF.SMSP
- EF.SPN
- EF.PLMNsel
- EF.PLMNWAcT
- EF.OPLMNwAcT
- EF.HPLMNACt
- EF.ACC
- EF.MSISDN
- EF.AD
- EF.SST
- ADF.USIM
- EF.EHPLMN
- EF.UST
- EF.ePDGId
- EF.ePDGSelection
- ADF.ISIM
- EF.PCSCF
- EF.DOMAIN
- EF.IMPI
- EF.IMPU
- EF.UICCIARI
- EF.IST

pySim-read usage

Legacy tool for reading some parts of a SIM card

```
             [--modem-baud BAUD] [--osmocon PATH]
```

Serial Reader

- **-d, --device** Serial Device for SIM access
 Default: “/dev/ttyUSB0”

- **-b, --baud** Baud rate used for SIM access
 Default: 9600
PC/SC Reader

- `--pcsc-device`
 PC/SC reader number to use for SIM access

AT Command Modem Reader

- `--modem-device`
 Serial port of modem for Generic SIM Access (3GPP TS 27.007)

- `--modem-baud`
 Baud rate used for modem port

 Default: 115200

OsmocomBB Reader

- `--osmocon`
 Socket path for Calypso (e.g. Motorola C1XX) based reader (via OsmocomBB)

1.3 pySim library

1.3.1 pySim filesystem abstraction

Representation of the ISO7816-4 filesystem model.

The File (and its derived classes) represent the structure / hierarchy of the ISO7816-4 smart card file system with the MF, DF, EF and ADF entries, further sub-divided into the EF sub-types Transparent, Linear Fixed, etc.

The classes are intended to represent the specification of the filesystem, not the actual contents / runtime state of interacting with a given smart card.

```python
class pySim.filesystem.BerTlvEF(
    fid: str,
    sfid: Optional[str] = None,
    name: Optional[str] = None,
    desc: Optional[str] = None,
    parent: Optional[pySim.filesystem.CardDF] = None,
    size={1, None}, **kwargs)
```

BER-TLV EF (Entry File) in the smart card filesystem. A BER-TLV EF is a binary file with a BER (Basic Encoding Rules) TLV structure

NOTE: We currently don’t really support those, this class is simply a wrapper around TransparentEF as a placeholder, so we can already define EFs of BER-TLV type without fully supporting them.

Parameters

- `fid` – File Identifier (4 hex digits)
- `sfid` – Short File Identifier (2 hex digits, optional)
- `name` – Brief name of the file, lik EF_ICCID
- `desc` – Description of the file
- `parent` – Parent CardFile object within filesystem hierarchy
- `size` – tuple of (minimum_size, recommended_size)

```python
class ShellCommands
```

Shell commands specific for BER-TLV EFs.

```python
do_delete_data(opts)
```

Delete data for a given tag in a BER-TLV EF
do_retrieve_data(opts)
Retrieve (Read) data from a BER-TLV EF

do_retrieve_tags(opts)
List tags available in a given BER-TLV EF

do_set_data(opts)
Set (Write) data for a given tag in a BER-TLV EF

class pySim.filesystem.CardADF(aid: str, **kwargs)
ADF (Application Dedicated File) in the smart card filesystem

Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
- **name** – Brief name of the file, lik EF_ICCID
- **desc** – Description of the file
- **parent** – Parent CardFile object within filesystem hierarchy
- **profile** – Card profile that this file should be part of
- **service** – Service (SST/UST/IST) associated with the file

A card application is represented by an ADF (with contained hierarchy) and optionally some SW definitions.

Parameters

- **adf** – ADF name
- **sw** – Dict of status word conversions

interpret_sw(sw)
Interpret a given status word within the application.

Parameters

- **sw** – Status word as string of 4 hex digits

Returns Tuple of two strings

class pySim.filesystem.CardDF(**kwargs)
DF (Dedicated File) in the smart card filesystem. Those are basically sub-directories.

Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
- **name** – Brief name of the file, lik EF_ICCID
- **desc** – Description of the file
- **parent** – Parent CardFile object within filesystem hierarchy
- **profile** – Card profile that this file should be part of
- **service** – Service (SST/UST/IST) associated with the file

class ShellCommands
add_file(child: pySim.filesystem.CardFile, ignore_existing: bool = False)
Add a child (DF/EF) to this DF.

Parameters

- **child** – The new DF/EF to be added.
- **ignore_existing** – Ignore, if file with given FID already exists. Old one will be kept.

add_files(children: Iterable[pySim.filesystem.CardFile], ignore_existing: bool = False)
Add a list of child (DF/EF) to this DF.

Parameters

- **children** – List of new DF/EFs to be added.
- **ignore_existing** – Ignore, if file[s] with given FID already exists. Old one[s] will be kept.

get_selectables(flags=[]) → dict
Return a dict of {'identifier': File} that is selectable from the current DF.

Parameters **flags** – Specify which selectables to return ‘FIDS’ and/or ‘NAMES’; If not specified, all selectables will be returned.

Returns dict containing all selectable items. Key is identifier (string), value a reference to a CardFile (or derived class) instance.

lookup_file_by_fid(fid: str) → Optional[pySim.filesystem.CardFile]
Find a file with given file ID within current DF.

lookup_file_by_name(name: Optional[str]) → Optional[pySim.filesystem.CardFile]
Find a file with given name within current DF.

lookup_file_by_sfid(sfid: Optional[str]) → Optional[pySim.filesystem.CardFile]
Find a file with given short file ID within current DF.

class pySim.filesystem.CardEF(*, fid, **kwargs)
EF (Entry File) in the smart card filesystem

Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
- **name** – Brief name of the file, lik EF_ICCID
- **desc** – Description of the file
- **parent** – Parent CardFile object within filesystem hierarchy
- **profile** – Card profile that this file should be part of
- **service** – Service (SST/UST/IST) associated with the file

get_selectables(flags=[]) → dict
Return a dict of {'identifier': File} that is selectable from the current DF.

Parameters **flags** – Specify which selectables to return ‘FIDS’ and/or ‘NAMES’; If not specified, all selectables will be returned.

Returns dict containing all selectable items. Key is identifier (string), value a reference to a CardFile (or derived class) instance.

class pySim.filesystem.CardFile(fid: str = None, sfid: str = None, name: str = None, desc: str = None, parent: Optional[CardDF] = None, profile: Optional[CardProfile] = None, service: Optional[Union[int, List[int], Tuple[int, ...]]] = None)
Base class for all objects in the smart card filesystem. Serve as a common ancestor to all other file types; rarely used directly.
Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
- **name** – Brief name of the file, like EF_ICCID
- **desc** – Description of the file
- **parent** – Parent CardFile object within filesystem hierarchy
- **profile** – Card profile that this file should be part of
- **service** – Service (SST/UST/IST) associated with the file

Build the relative sequence of files we need to traverse to get from us to ‘target’.

`decode_select_response` *(data_hex: str) → Optional[List[pySim.filesystem.CardFile]]*

Decode the response to a SELECT command.

Parameters **data_hex** – Hex string of the select response

`fullyQualifiedPath` *(prefer_name: bool = True) → List[str]*

Return fully qualified path to file as list of FID or name strings.

Parameters **prefer_name** – Preferably build path of names; fall-back to FIDs as required

`fullyQualifiedPathFobj` → List[pySim.filesystem.CardFile]

Return fully qualified path to file as list of CardFile instance references.

`get_mf()` → Optional[pySim.filesystem.CardMF]

Return the MF (root) of the file system.

`getProfile()`

Get the profile associated with this file. If this file does not have any profile assigned, try to find a file above (usually the MF) in the filesystem hierarchy that has a profile assigned.

`getSelectableNames` *(flags={}) → List[str]*

Return a dict of {'identifier': File} that is selectable from the current file.

Parameters **flags** – Specify which selectables to return ‘FIDS’ and/or ‘NAMES’; If not specified, all selectables will be returned.

Returns list containing all selectable names.

`getSelectables` *(flags={}) → Dict[str, pySim.filesystem.CardFile]*

Return a dict of {'identifier': File} that is selectable from the current file.

Parameters **flags** – Specify which selectables to return ‘FIDS’ and/or ‘NAMES’; If not specified, all selectables will be returned.

Returns dict containing all selectable items. Key is identifier (string), value a reference to a CardFile (or derived class) instance.

`shouldExistForServices` *(services: List[int]*)

Assuming the provided list of activated services, should this file exist and be activated?.

class pySim.filesystem.CardMF(**kwargs**)

MF (Master File) in the smart card filesystem

Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
• **name** – Brief name of the file, lik EF_ICCID
• **desc** – Description of the file
• **parent** – Parent CardFile object within filesystem hierarchy
• **profile** – Card profile that this file should be part of
• **service** – Service (SST/UST/IST) associated with the file

`add_application_df(app: pySim.filesystem.CardADF)`
Add an Application to the MF

`decode_select_response(data_hex: Optional[str]) -> object`
Decode the response to a SELECT command.
This is the fall-back method which automatically defers to the standard decoding method defined by the card profile. When no profile is set, then no decoding is performed. Specific derived classes (usually ADF) can overload this method to install specific decoding.

`get_app_names()`
Get list of completions (AID names)

`get_app_selectables(flags=[]) -> dict`
Get applications by AID + name

`get_selectables(flags=[]) -> dict`
Return a dict of {'identifier': File} that is selectable from the current DF.

Parameters

- **flags** – Specify which selectables to return ‘FIDS’ and/or ‘NAMES’; If not specified, all selectable will be returned.

Returns

dict containing all selectable items. Key is identifier (string), value a reference to a CardFile (or derived class) instance.

class pySim.filesystem.CardModel
A specific card model, typically having some additional vendor-specific files. All you need to do is to define a sub-class with a list of ATRs or an overridden match method.

abstract classmethod add_files(rs: pySim.filesystem.RuntimeState)
Add model specific files to given RuntimeState.

static apply_matching_models(scc: pySim.commands.SimCardCommands, rs: pySim.filesystem.RuntimeState)
Check if any of the CardModel sub-classes ‘match’ the currently inserted card (by ATR or overriding the ‘match’ method). If so, call their ‘add_files’ method.

classmethod match(scc: pySim.commands.SimCardCommands) -> bool
Test if given card matches this model.

class pySim.filesystem.CyclicEF(fid: str, sfid: Optional[str] = None, name: Optional[str] = None, desc: Optional[str] = None, parent: Optional[pySim.filesystem.CardDF] = None, rec_len={1, None}, **kwargs)
Cyclic EF (Entry File) in the smart card filesystem

Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
- **name** – Brief name of the file, lik EF_ICCID
- **desc** – Description of the file
• **parent** – Parent CardFile object within filesystem hierarchy
• **rec_len** – set of {minimum_length, recommended_length}

class `pySim.filesystem.FileData(desc)`
Represent the runtime, on-card data.

class `pySim.filesystem.LinFixedEF(fid: str, sfid: Optional[str] = None, name: Optional[str] = None, desc: Optional[str] = None, parent: Optional[pySim.filesystem.CardDF] = None, rec_len={1, None}, **kwargs)`

Linear Fixed EF (Entry File) in the smart card filesystem.
Linear Fixed EFs are record oriented files. They consist of a number of fixed-size records. The records can be individually read/updated.

Parameters
• **fid** – File Identifier (4 hex digits)
• **sfid** – Short File Identifier (2 hex digits, optional)
• **name** – Brief name of the file, lik EF_ICCID
• **desc** – Description of the file
• **parent** – Parent CardFile object within filesystem hierarchy
• **rec_len** – set of {minimum_length, recommended_length}

class `ShellCommands(**kwargs)`
Shell commands specific for Linear Fixed EFs.

do_decode_hex(opts)
Decode command-line provided hex-string as if it was read from the file.

do_edit_record_decoded(opts)
Edit the JSON representation of one record in an editor.

do_read_record(opts)
Read one or multiple records from a record-oriented EF

do_read_record_decoded(opts)
Read + decode a record from a record-oriented EF

do_read_records(opts)
Read all records from a record-oriented EF

do_read_records_decoded(opts)
Read + decode all records from a record-oriented EF

do_update_record(opts)
Update (write) data to a record-oriented EF

do_update_record_decoded(opts)
Encode + Update (write) data to a record-oriented EF

decode_record_bin(raw_bin_data: bytearray) → dict
Decode raw (binary) data into abstract representation.
A derived class would typically provide a _decode_record_bin() or _decode_record_hex() method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters `raw_bin_data` – binary encoded data

Returns abstract_data; dict representing the decoded data
decode_record_hex (*raw_hex_data: str*) → dict

Decodes raw (hex string) data into an abstract representation.

A derived class would typically provide a `_decode_record_bin()` or `_decode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `raw_hex_data` – hex-encoded data

Returns
- `dict` representing the decoded data

encode_record_bin (*abstract_data: dict*) → `bytearray`

Encodes the abstract representation into raw (binary) data.

A derived class would typically provide an `_encode_record_bin()` or `_encode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `abstract_data` – dict representing the decoded data

Returns
- `bytearray` representing the encoded data

encode_record_hex (*abstract_data: dict*) → `str`

Encodes the abstract representation into raw (hex string) data.

A derived class would typically provide an `_encode_record_bin()` or `_encode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `abstract_data` – dict representing the decoded data

Returns
- `str` representing the encoded data

class `pySim.filesystem.RuntimeState(card, profile: CardProfile)`

Represents the runtime state of a session with a card.

Parameters
- `card` – pysim.cards.Card instance
- `profile` – CardProfile instance

activate_file(name: str)

Requests ACTIVATE FILE of specified file.

get_application_df() → Optional[`pySim.filesystem.CardADF`]

Obtains the currently selected application DF (if any).

Returns
- CardADF() instance or None

get_cwd() → `pySim.filesystem.CardDF`

Obtains the current working directory.

Returns
- CardDF instance

interpret_sw(sw: str)

Interprets a given status word relative to the currently selected application or the underlying card profile.

Parameters
- `sw` – Status word as string of 4 hex digits

Returns
- Tuple of two strings

probe_file(fid: str, cmd_app=None)

Blindly tries to select a file and automatically adds a matching file object if the file actually exists.
read_binary(*length: Optional[int] = None, offset: int = 0*)

Read [part of] a transparent EF binary data.

Parameters

- **length** – Amount of data to read (None: as much as possible)
- **offset** – Offset into the file from which to read ‘length’ bytes

Returns binary data read from the file

read_binary_dec () → Tuple[dict, str]

Read [part of] a transparent EF binary data and decode it.

Parameters

- **length** – Amount of data to read (None: as much as possible)
- **offset** – Offset into the file from which to read ‘length’ bytes

Returns abstract decode data read from the file

read_record(*rec_nr: int = 0*)

Read a record as binary data.

Parameters rec_nr – Record number to read

Returns hex string of binary data contained in record

read_record_dec(*rec_nr: int = 0*) → Tuple[dict, str]

Read a record and decode it to abstract data.

Parameters rec_nr – Record number to read

Returns abstract data contained in record

reset(cmd_app=None) → str

Perform physical card reset and obtain ATR. :param cmd_app: Command Application State (for unregistering old file commands)

retrieve_data(*tag: int = 0*)

Read a DO/TLV as binary data.

Parameters tag – Tag of TLV/DO to read

Returns hex string of full BER-TLV DO including Tag and Length

retrieve_tags()

Retrieve tags available on BER-TLV EF.

Returns list of integer tags contained in EF

select(name: str, cmd_app=None)

Select a file (EF, DF, ADF, MF, …).

Parameters

- **name** – Name of file to select
- **cmd_app** – Command Application State (for unregistering old file commands)

select_file(file: pySim.filesystem.CardFile, cmd_app=None)

Select a file (EF, DF, ADF, MF, …).

Parameters

- **file** – CardFile [or derived class] instance
• **cmd_app** – Command Application State (for unregistering old file commands)

```python
def set_data(tag: int, data_hex: str):
    # Update a TLV/DO with given binary data
```

Parameters

- **tag** – Tag of TLV/DO to be written
- **data_hex** – Hex string binary data to be written (value portion)

```python
def status():
    # Request STATUS (current selected file FCP) from card.
```

```python
def unregister_cmds(cmd_app=None):
    # Unregister all file specific commands.
```

```python
def update_binary(data_hex: str, offset: int = 0):
    # Update transparent EF binary data.
```

Parameters

- **data_hex** – hex string of data to be written
- **offset** – Offset into the file from which to write ‘data_hex’

```python
def update_binary_dec(data: dict):
    # Update transparent EF from abstract data. Encodes the data to binary and then updates the EF with it.
```

Parameters

- **data** – abstract data which is to be encoded and written

```python
def update_record(rec_nr: int, data_hex: str):
    # Update a record with given binary data
```

Parameters

- **rec_nr** – Record number to read
- **data_hex** – Hex string binary data to be written

```python
def update_record_dec(rec_nr: int, data: dict):
    # Update a record with given abstract data. Will encode abstract to binary data and then write it to the given record on the card.
```

Parameters

- **rec_nr** – Record number to read
- **data** – Abstract data to be written

```python
```

Transparent EF (Entry File) containing fixed-size records.

These are the real odd-balls and mostly look like mistakes in the specification: Specified as ‘transparent’ EF, but actually containing several fixed-length records inside. We add a special class for those, so the user only has to provide encoder/decoder functions for a record, while this class takes care of split / merge of records.

Parameters

- **fid** – File Identifier (4 hex digits)
- **sfid** – Short File Identifier (2 hex digits, optional)
- **name** – Brief name of the file, like EF_ICCID
• **desc** – Description of the file
• **parent** – Parent CardFile object within filesystem hierarchy
• **rec_len** – Length of the fixed-length records within transparent EF
• **size** – tuple of (minimum_size, recommended_size)

decode_record_bin

`decode_record_bin(raw_bin_data: bytearray) -> dict`

Decode raw (binary) data into abstract representation.

A derived class would typically provide a `_decode_record_bin()` or `_decode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `raw_bin_data` – binary encoded data

Returns
- `abstract_data`; dict representing the decoded data

decode_record_hex

`decode_record_hex(raw_hex_data: str) -> dict`

Decode raw (hex string) data into abstract representation.

A derived class would typically provide a `_decode_record_bin()` or `_decode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `raw_hex_data` – hex-encoded data

Returns
- `abstract_data`; dict representing the decoded data

encode_record_bin

`encode_record_bin(abstract_data: dict) -> bytearray`

Encode abstract representation into raw (binary) data.

A derived class would typically provide an `_encode_record_bin()` or `_encode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `abstract_data` – dict representing the decoded data

Returns
- `binary encoded data`

encode_record_hex

`encode_record_hex(abstract_data: dict) -> str`

Encode abstract representation into raw (hex string) data.

A derived class would typically provide an `_encode_record_bin()` or `_encode_record_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

Parameters
- `abstract_data` – dict representing the decoded data

Returns
- `hex string encoded data`

class

```python
class pySim.filesystem.TransparentEF(fid: str, sfid: Optional[str] = None, name: Optional[str] = None, desc: Optional[str] = None, parent: Optional[pySim.filesystem.CardDF] = None, size={1, None}, **kwargs)
```

Transparent EF (Entry File) in the smart card filesystem.

A Transparent EF is a binary file with no formal structure. This is contrary to Record based EFs which have [fixed size] records that can be individually read/updated.

Parameters
- `fid` – File Identifier (4 hex digits)
- `sfid` – Short File Identifier (2 hex digits, optional)
• **name** – Brief name of the file, like EF_ICCID
• **desc** – Description of the file
• **parent** – Parent CardFile object within filesystem hierarchy
• **size** – tuple of (minimum_size, recommended_size)

```python
class ShellCommands:
    Shell commands specific for transparent EFs.

    **do_decode_hex**(opts)
    Decode command-line provided hex-string as if it was read from the file.

    **do_edit_binary_decoded**(opts)
    Edit the JSON representation of the EF contents in an editor.

    **do_read_binary**(opts)
    Read binary data from a transparent EF

    **do_read_binary_decoded**(opts)
    Read + decode data from a transparent EF

    **do_update_binary**(opts)
    Update (Write) data of a transparent EF

    **do_update_binary_decoded**(opts)
    Encode + Update (Write) data of a transparent EF

**decode_bin**(raw_bin_data: bytearray) → dict
Decode raw (binary) data into abstract representation.

A derived class would typically provide a `_decode_bin()` or `_decode_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

    **Parameters**
    raw_bin_data – binary encoded data

    **Returns**
    abstract_data; dict representing the decoded data

**decode_hex**(raw_hex_data: str) → dict
Decode raw (hex string) data into abstract representation.

A derived class would typically provide a `_decode_bin()` or `_decode_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

    **Parameters**
    raw_hex_data – hex-encoded data

    **Returns**
    abstract_data; dict representing the decoded data

**encode_bin**(abstract_data: dict) → bytearray
Encode abstract representation into raw (binary) data.

A derived class would typically provide an `_encode_bin()` or `_encode_hex()` method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

    **Parameters**
    abstract_data – dict representing the decoded data

    **Returns**
    binary encoded data

**encode_hex**(abstract_data: dict) → str
Encode abstract representation into raw (hex string) data.
A derived class would typically provide an _encode_bin() or _encode_hex() method for implementing this specifically for the given file. This function checks which of the method exists, add calls them (with conversion, as needed).

**Parameters**
- `abstract_data` – dict representing the decoded data

**Returns**
- hex string encoded data

```python
def pySim.filesystem.interpret_sw(sw_data: dict, sw: str):
 # Interpret a given status word.
 Parameters
 • `sw_data` – Hierarchical dict of status word matches
 • `sw` – status word to match (string of 4 hex digits)
 Returns
tuple of two strings (class_string, description)
```

### 1.3.2 pySim commands abstraction

pySim: SIM Card commands according to ISO 7816-4 and TS 11.11

### 1.3.3 pySim Transport

The pySim.transport classes implement specific ways how to communicate with a SIM card. A “transport” provides ways to transceive APDUs with the card.

The most commonly used transport uses the PC/SC interface to utilize a variety of smart card interfaces (“readers”).

**Transport base class**

pySim: PCSC reader transport link base

```python
class pySim.transport.LinkBase(sw_interpreter=None, apdu_tracer=None):
 # Base class for link/transport to card.
 abstract connect()
 # Connect to a card immediately

def disconnect()
 # Disconnect from card

 abstract reset_card()
 # Resets the card (power down/up)

def send_apdu(pdu):
 # Sends an APDU and auto fetch response data
 Parameters
 • `pdu` – string of hexadecimal characters (ex. “A0A4000023F00”)
 Returns
tuple(data, sw), where
 data : string (in hex) of returned data (ex. “074F4EFFFF”) sw : string (in hex) of status word (ex. “9000”)

 def send_apdu_checksw(pdu, sw='9000'):
 # Sends an APDU and check returned SW
 Parameters
• **pdu** – string of hexadecimal characters (ex. “A0A40000023F00”)

• **sw** – string of 4 hexadecimal characters (ex. “9000”). The user may mask out certain digits using a ‘?’ to add some ambiguity if needed.

Returns

tuple(data, sw), where data : string (in hex) of returned data (ex. “074F4EFFFF”) sw : string (in hex) of status word (ex. “9000”)

send_apdu_constr(cla, ins, p1, p2, cmd_constr, cmd_data, resp_constr)

Build and sends an APDU using a ‘construct’ definition; parses response.

Parameters

• **cla** – string (in hex) ISO 7816 class byte

• **ins** – string (in hex) ISO 7816 instruction byte

• **p1** – string (in hex) ISO 7116 Parameter 1 byte

• **p2** – string (in hex) ISO 7116 Parameter 2 byte

• **cmd_constr** – defining how to generate binary APDU command data

• **cmd_data** – command data passed to cmd_constr

• **resp_constr** – defining how to decode binary APDU response data

Returns Tuple of (decoded_data, sw)

send_apdu_constr_checksw(cla, ins, p1, p2, cmd_constr, cmd_data, resp_constr, sw_exp='9000')

Build and sends an APDU using a ‘construct’ definition; parses response.

Parameters

• **cla** – string (in hex) ISO 7816 class byte

• **ins** – string (in hex) ISO 7816 instruction byte

• **p1** – string (in hex) ISO 7116 Parameter 1 byte

• **p2** – string (in hex) ISO 7116 Parameter 2 byte

• **cmd_constr** – defining how to generate binary APDU command data

• **cmd_data** – command data passed to cmd_constr

• **resp_constr** – defining how to decode binary APDU response data

• **exp_sw** – string (in hex) of status word (ex. “9000”)

Returns Tuple of (decoded_data, sw)

send_apdu_raw(pdu: str)

Sends an APDU with minimal processing

Parameters **pdu** – string of hexadecimal characters (ex. “A0A4000023F00”)

Returns

tuple(data, sw), where data : string (in hex) of returned data (ex. “074F4EFFFF”) sw : string (in hex) of status word (ex. “9000”)

set_sw_interpreter(interp)

Set an (optional) status word interpreter.

abstract wait_for_card(timeout: Optional[int] = None, newcardonly: bool = False)

Wait for a card and connect to it
Parameters

- **timeout** – Maximum wait time in seconds (None=no timeout)
- **newcardonly** – Should we wait for a new card, or an already inserted one?

```python
pySim.transport.argparse_add_reader_args(arg_parser)
Add all reader related arguments to the given argparse.ArgumentParser instance.
```

```python
pySim.transport.init_reader(opts, **kwargs) → Optional[pySim.transport.LinkBase]
Init card reader driver
```

calypso / OsmocomBB transport

This allows the use of the SIM slot of an OsmocomBB compatible phone with the TI Calypso chipset, using the L1CTL interface to talk to the layer1.bin firmware on the phone.

```python
class pySim.transport.calypso.CalypsoSimLink(sock_path: str = '/tmp/osmocom_l2', **kwargs)
Transport Link for Calypso based phones.
```

- **connect()**
 Connect to a card immediately

- **disconnect()**
 Disconnect from card

- **reset_card()**
 Resets the card (power down/up)

- **wait_for_card**(timeout=None, newcardonly=False)
 Wait for a card and connect to it

 Parameters

 - **timeout** – Maximum wait time in seconds (None=no timeout)
 - **newcardonly** – Should we wait for a new card, or an already inserted one?

AT-command Modem transport

This transport uses AT commands of a cellular modem in order to get access to the SIM card inserted in such a modem.

```python
class pySim.transport.modem_atcmd.ModemATCommandLink(device: str = '/dev/ttyUSB0', baudrate: int = 115200, **kwargs)
Transport Link for 3GPP TS 27.007 compliant modems.
```

- **connect()**
 Connect to a card immediately

- **disconnect()**
 Disconnect from card

- **reset_card()**
 Resets the card (power down/up)

- **wait_for_card**(timeout=None, newcardonly=False)
 Wait for a card and connect to it

 Parameters

 - **timeout** – Maximum wait time in seconds (None=no timeout)
 - **newcardonly** – Should we wait for a new card, or an already inserted one?
PC/SC transport

PC/SC is the standard API for accessing smart card interfaces on all major operating systems, including the MS Windows Family, OS X as well as Linux / Unix OSs.

class pySim.transport.pcsc.PcscSimLink(reader_number: int = 0, **kwargs)

pySim: PCSC reader transport link.

 connect()
 Connect to a card immediately

disconnect()
 Disconnect from card

reset_card()
 Resets the card (power down/up)

wait_for_card(timeout: Optional[int] = None, newcardonly: bool = False)
 Wait for a card and connect to it

Parameters

• timeout – Maximum wait time in seconds (None=no timeout)

• newcardonly – Should we wait for a new card, or an already inserted one?

Serial/UART transport

This transport implements interfacing smart cards via very simplistic UART readers. These readers basically wire together the Rx+Tx pins of a RS232 UART, provide a fixed crystal oscillator for clock, and operate the UART at 9600 bps. These readers are sometimes called Phoenix.

class pySim.transport.serial.SerialSimLink(device: str = '/dev/ttyUSB0', baudrate: int = 9600, rst: str = '-rts', debug: bool = False, **kwargs)

pySim: Transport Link for serial (RS232) based readers included with simcard

 connect()
 Connect to a card immediately

disconnect()
 Disconnect from card

reset_card()
 Resets the card (power down/up)

wait_for_card(timeout=None, newcardonly=False)
 Wait for a card and connect to it

Parameters

• timeout – Maximum wait time in seconds (None=no timeout)

• newcardonly – Should we wait for a new card, or an already inserted one?
1.3.4 pySim construct utilities

class `pySim.construct.BcdAdapter(subcon)`

convert a bytes() type to a string of BCD nibbles.

pySim.construct.BitsRFU(n=1)
Field that packs Reserved for Future Use (RFU) bit(s) as defined in TS 31.101 Sec. “3.4 Coding Conventions”

Use this for (currently) unused/reserved bits whose contents should be initialized automatically but should not be cleared in the future or when restoring read data (unlike padding).

Parameters

- `n (Integer)` – Number of bits (default: 1)

pySim.construct.BytesRFU(n=1)
Field that packs Reserved for Future Use (RFU) byte(s) as defined in TS 31.101 Sec. “3.4 Coding Conventions”

Use this for (currently) unused/reserved bytes whose contents should be initialized automatically but should not be cleared in the future or when restoring read data (unlike padding).

Parameters

- `n (Integer)` – Number of bytes (default: 1)

class `pySim.construct.GreedyInteger(signed=False, swapped=False)`
A variable-length integer implementation, think of combining GrredyBytes with BytesInteger.

pySim.construct.GsmString(n)
GSM 03.38 encoded byte string of fixed length n. Encoder appends padding bytes (b’xff”) to maintain length. Decoder removes those trailing bytes.

Exceptions are raised for invalid characters and length excess.

Parameters

- `n (Integer)` – Fixed length of the encoded byte string

class `pySim.construct.GsmStringAdapter(subcon, codec='gsm03.38', err='strict')`
Convert GSM 03.38 encoded bytes to a string.

class `pySim.construct.HexAdapter(subcon)`
convert a bytes() type to a string of hex nibbles.

class `pySim.construct.InvertAdapter(subcon)`
inverse logic (false->true, true->false).

class `pySim.construct.Rpad(subcon, pattern=b'xff')`
Encoder appends padding bytes (b’xff”) up to target size. Decoder removes trailing padding bytes.

Parameters

- `subcon` – Subconstruct as defined by construct library
- `pattern` – set padding pattern (default: b’xff”)

pySim.construct.filter_dict(d, exclude_prefix='_')
filter the input dict to ensure no keys starting with 'exclude_prefix' remain.

pySim.construct.normalize_construct(c)
Convert a construct specific type to a related base type, mostly useful so we can serialize it.

pySim.construct.parse_construct(c, raw_bin_data: bytes, length: Optional[int] = None, exclude_prefix: str = '_')
Helper function to wrap around normalize_construct() and filter_dict().
1.3.5 pySim TLV utilities

object-oriented TLV parser/encoder library.

class pySim.tlv.BER_TLV_IE(**kwargs)
 TLV_IE formatted as ASN.1 BER described in ITU-T X.690 8.1.2.

class pySim.tlv.COMPR_TLV_IE(**kwargs)
 TLV_IE formatted as COMPREHENSION-TLV as described in ETSI TS 101 220.

class pySim.tlv.IE(**kwargs)
 Base class for various Information Elements. We understand the notion of a hierarchy of IEs on top of the Transcodable class.

 def from_bytes(do: bytes)
 Parse the value part from binary bytes to internal representation.

 def from_dict(decoded: dict)
 Set the IE internal decoded representation to data from the argument. If this is a nested IE, the child IE instance list is re-created.

 is_constructed()
 Is this IE constructed by further nested IEs?

 def to_bytes()
 Convert the internal representation of the value part to binary bytes.

 def to_dict()
 Return a JSON-serializable dict representing the [nested] IE data.

 abstract to_ie() → bytes
 Convert the internal representation to entire IE including IE header.

class pySim.tlv.TLV_IE(**kwargs)
 Abstract base class for various TLV type Information Elements.

 def to_ie()
 Convert the internal representation to entire IE including IE header.

 def to_tlv()
 Convert the internal representation to binary TLV bytes.

class pySim.tlv.TLV_IE_Collection(desc=None, **kwargs)
 A TLV_IE_Collection consists of multiple TLV_IE classes identified by their tags. A given encoded DO may contain any of them in any order, and may contain multiple instances of each DO.

 def from_bytes(binary: bytes) → List[pySim.tlv.TLV_IE]
 Create a list of TLV_IEs from the collection based on binary input data. :param binary: binary bytes of encoded data

 Returns list of instances of TLV_IE sub-classes containing parsed data

 def from_dict(decoded: List[dict]) → List[pySim.tlv.TLV_IE]
 Create a list of TLV_IE instances from the collection based on an array of dicts, where they key indicates the name of the TLV_IE subclass to use.

class pySim.tlv.TlvCollectionMeta(name, bases, namespace, **kwargs)
 Metaclass which we use to set some class variables at the time of defining a subclass. This allows us to create subclasses for each Collection type, where the class represents fixed parameters like the nested IE classes and instances of it represent the actual TLV data.
class pySim.tlv.TlvMeta(name, bases, namespace, **kwargs)

Metaclass which we use to set some class variables at the time of defining a subclass. This allows us to create subclasses for each TLV/IE type, where the class represents fixed parameters like the tag/type and instances of it represent the actual TLV data.

class pySim.tlv.Transcodable

 from_bytes(do: bytes)

 Convert from binary bytes to internal representation. Store the decoded result in the internal state and return it.

 to_bytes() -> bytes

 Convert from internal representation to binary bytes. Store the binary result in the internal state and return it.

pySim.tlv.flatten_dict_lists(inp)

Hierarchically flatten each list-of-dicts into a single dict. This is useful to make the output of hierarchical TLV decoder structures flatter and more easy to read.

1.3.6 pySim utility functions

pySim: various utilities

class pySim.utils.CardCommand(name, ins, cla_list=None, desc=None)

A single card command / instruction.

 match_cla(cla)

 Does the given CLA match the CLA list of the command?.

class pySim.utils.CardCommandSet(name, cmds=[])

A set of card instructions, typically specified within one spec.

 lookup(ins, cla=None)

 look-up the command within the CommandSet.

class pySim.utils.DataObject(name: str, desc: Optional[str] = None, tag: Optional[int] = None)

A DataObject (DO) in the sense of ISO 7816-4. Contrary to ‘normal’ TLVs where one simply has any number of different TLVs that may occur in any order at any point, ISO 7816 has the habit of specifying TLV data but with very specific ordering, or specific choices of tags at specific points in a stream. This class tries to represent this.

Parameters

 • name – A brief, all-lowercase, underscore separated string identifier
 • desc – A human-readable description of what this DO represents
 • tag – The tag associated with this DO

 decode(binary: bytes) -> Tuple[dict, bytes]

 Decode a single DOs from the input data. :param binary: binary bytes of encoded data

 Returns tuple of (decoded_result, binary_remainder)

 abstract from_bytes(do: bytes)

 Parse the value part of the DO into the internal state of this instance. :param do: binary encoded bytes

 from_tlv(do: bytes) -> bytes

 Parse binary TLV representation into internal state. The resulting decoded representation is _not_ returned, but just internalized in the object instance! :param do: input bytes containing TLV-encoded representation

 Returns bytes remaining at end of ‘do’ after parsing one TLV/DO.
abstract to_bytes() → bytes
 Encode the internal state of this instance into the TLV value part. :returns: binary bytes encoding the internal state

to_dict() → dict
 Return a dict in form “name: decoded_value”

to_tlv() → bytes
 Encode internal representation to binary TLV: :returns: bytes encoded in TLV format.

class pySim.utils.DataObjectChoice(name: str, desc: Optional[str] = None, members=None)
 One Data Object from within a choice, identified by its tag. This means that exactly one member of the choice must occur, and which one occurs depends on the tag.
 decode(binary: bytes) → Tuple[dict, bytes]
 Decode a single DOs from the choice based on the tag. :param binary: binary bytes of encoded data
 Returns tuple of (decoded_result, binary_remainder)

class pySim.utils.DataObjectCollection(name: str, desc: Optional[str] = None, members=None)
 A DataObjectCollection consists of multiple Data Objects identified by their tags. A given encoded DO may contain any of them in any order, and may contain multiple instances of each DO.
 decode(binary: bytes) → Tuple[List, bytes]
 Decode any number of DOs from the collection until the end of the input data, or uninitialized memory (0xFF) is found. :param binary: binary bytes of encoded data
 Returns tuple of (decoded_result, binary_remainder)

class pySim.utils.DataObjectSequence(name: str, desc: Optional[str] = None, sequence=None)
 A sequence of DataObjects or DataObjectChoices. This allows us to express a certain ordered sequence of DOs or choices of DOs that have to appear as per the specification. By wrapping them into this formal DataObjectSequence, we can offer convenience methods for encoding or decoding an entire sequence.
 decode(binary: bytes) → Tuple[list, bytes]
 Decode a sequence by calling the decoder of each element in the sequence. :param binary: binary bytes of encoded data
 Returns tuple of (decoded_result, binary_remainder)

 decode_multi(do: bytes) → Tuple[list, bytes]
 Decode multiple occurrences of the sequence from the binary input data. :param do: binary input data to be decoded
 Returns list of results of the decoder of this sequences

class pySim.utils.JsonEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)
 Extend the standard library JSONEncoder with support for more types.

 Constructor for JSONEncoder, with sensible defaults.

 If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys is True, such items are simply skipped.

 If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped. If ensure_ascii is false, the output can contain non-ASCII characters.
If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’,’, ‘: ’) if indent is None and (‘,’; ‘: ’) otherwise. To get the most compact JSON representation, you should specify (‘,’; ‘:’) to eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a JSON encodable version of the object or raise a TypeError.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

```python
def default(self, o):
    try:
        iterable = iter(o)
    except TypeError:
        pass
    else:
        return list(iterable)

    # Let the base class default method raise the TypeError
    return JSONEncoder.default(self, o)
```

class pySim.utils.TL0_DataObject(name: str, desc: str, tag: int, val=None)
Data Object that has Tag, Len=0 and no Value part.

Parameters

- name – A brief, all-lowercase, underscore separated string identifier
- desc – A human-readable description of what this DO represents
- tag – The tag associated with this DO

from_bytes(binary: bytes)
Parse the value part of the DO into the internal state of this instance. :param do: binary encoded bytes
to_bytes() → bytes
Encode the internal state of this instance into the TLV value part. :returns: binary bytes encoding the internal state

pySim.utils.TLV_parser([0xAA, ..., 0xFF]) → [T, L, [V], T, L, [V], ...]
loops on the input list of bytes with the “first_TLV_parser()” function returns a list of 3-Tuples

pySim.utils.all_subclasses(cls) → set
Recursively get all subclasses of a specified class
pySim.utils.auto_int(x)
 Helper function for argparse to accept hexadecimal integers.

pySim.utils.b2h(b: bytearray) → str
 convert from a sequence of bytes to a string of hex nibbles

pySim.utils.bertlv_encode_len(length: int) → bytes
 Encode a single Length value according to ITU-T X.690 8.1.3; only the definite form is supported here. :param
 length: length value to be encoded

 Returns binary output data of BER-TLV length field

pySim.utils.bertlv_encode_tag(t) → bytes
 Encode a single Tag value according to ITU-T X.690 8.1.2

pySim.utils.bertlv_encode_len(binary: bytes) → Tuple[int, bytes]
 Parse a single Length value according to ITU-T X.690 8.1.3; only the definite form is supported here. :param
 binary: binary input data of BER-TLV length field

 Returns Tuple of (length, remainder)

pySim.utils.bertlv_parse_one(binary: bytes) → Tuple[dict, int, bytes, bytes]
 Parse a single TLV IE at the start of the given binary data. :param binary: binary input data of BER-TLV length
 field

 Returns dict, len:int, remainder:bytes)

 Return type Tuple of (tag

pySim.utils.bertlv_parse_tag(binary: bytes) → Tuple[dict, bytes]
 Parse a single Tag according to ITU-T X.690 8.1.2 :param binary: binary input data of BER-TLV length field

 Returns int, constructed:bool, tag:int}, remainder:bytes)

 Return type Tuple of ({class

pySim.utils.bertlv_parse_tag_raw(binary: bytes) → Tuple[int, bytes]
 Get a single raw Tag from start of input according to ITU-T X.690 8.1.2 :param binary: binary input data of
 BER-TLV length field

 Returns: Tuple of (tag:int, remainder:bytes)

pySim.utils.boxed_heading_str(heading, width=80)
 Generate a string that contains a boxed heading.

pySim.utils.calculate_luhn(cc) → int
 Calculate Luhn checksum used in e.g. ICCID and IMEI

pySim.utils.comprehensiontlv_encode_tag(tag) → bytes
 Encode a single Tag according to ETSI TS 101 220 Section 7.1.1

pySim.utils.comprehensiontlv_parse_one(binary: bytes) → Tuple[dict, int, bytes, bytes]
 Parse a single TLV IE at the start of the given binary data. :param binary: binary input data of BER-TLV length
 field

 Returns dict, len:int, remainder:bytes)

 Return type Tuple of (tag

pySim.utils.comprehensiontlv_parse_tag(binary: bytes) → Tuple[dict, bytes]
 Parse a single Tag according to ETSI TS 101 220 Section 7.1.1

pySim.utils.comprehensiontlv_parse_tag_raw(binary: bytes) → Tuple[int, bytes]
 Parse a single Tag according to ETSI TS 101 220 Section 7.1.1
pySim.utils.dec_addr_tlv(hexstr)
 Decode hex string to get EF.P-CSCF Address or EF.ePDGId or EF.ePDGIdEm. See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.

pySim.utils.dec_ePDGSelection(sixhexbytes)
 Decode ePDGSelection to get EF.ePDGSelection or EF.ePDGSelectionEm. See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.

pySim.utils.dec_imsi(ef: str) → Optional[str]
 Converts an EF value to the IMSI string representation

pySim.utils.dec_msisdn(ef_msisdn: str) → Optional[Tuple[int, int, Optional[str]]]
 Decode MSISDN from EF.MSISDN or EF.ADN (same structure). See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3.

pySim.utils.dec_spn(ef)
 Obsolete, kept for API compatibility

pySim.utils.dec_st(st, table=’sim’) → str
 Parses the EF S/U/IST and prints the list of available services in EF S/U/IST

pySim.utils.derive_mcc(digit1: int, digit2: int, digit3: int) → int
 Derive decimal representation of the MCC (Mobile Country Code) from three given digits.

pySim.utils.derive_milenage_opc(ki_hex: str, op_hex: str) → str
 Run the milenage algorithm to calculate OPC from Ki and OP

pySim.utils.derive_mnc(digit1: int, digit2: int, digit3: int = 15) → int
 Derive decimal representation of the MNC (Mobile Network Code) from two or (optionally) three given digits.

pySim.utils.enc_addr_tlv(addr, addr_type=’00’)
 Encode address TLV object used in EF.P-CSCF Address, EF.ePDGId and EF.ePDGIdEm. See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.

 Default values:
 • addr_type: 00 - FQDN format of Address

pySim.utils.enc_ePDGSelection(hexstr, mcc, mnc, epdg_priority=’0001’, epdg_fqdn_format=’00’)
 Encode ePDGSelection so it can be stored at EF.ePDGSelection or EF.ePDGSelectionEm. See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.

 Default values:
 • epdg_priority: ‘0001’ - 1st Priority
 • epdg_fqdn_format: ’00’ - Operator Identifier FQDN

pySim.utils.enc_imsi(imsi: str)
 Converts a string IMSI into the encoded value of the EF

pySim.utils.enc_msisdn(msisdn: str, npi: int = 1, ton: int = 3) → str
 Encode MSISDN as LHV so it can be stored to EF.MSISDN. See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3. (The result will not contain the optional Alpha Identifier at the beginning.)

 Default NPI / ToN values:
 • NPI: ISDN / telephony numbering plan (E.164 / E.163),
 • ToN: network specific or international number (if starts with ‘+’).

pySim.utils.enc_plmn(mcc: str, mnc: str) → str
 Converts integer MCC/MNC into 3 bytes for EF
pySim.utils.enc_spn(name: str, show_in_hplmn=False, hide_in_oplmn=False)
Obsolete, kept for API compatibility

pySim.utils.enc_st(st, service, state=1)
Encodes the EF S/U/IST/EST and returns the updated Service Table

Parameters

- **Table (st - Current value of SIM/USIM/ISIM Service)**
- **activated/de-activated (service - Service Number to encode as)**
- **activate (state - 1 mean)**
- **de-activate (0 means)**

Returns s - Modified value of SIM/USIM/ISIM Service Table

Default values:

- state: 1 - Sets the particular Service bit to 1

pySim.utils.first_TLV_parser((0xAA, 0x02, 0xAB, 0xCD, 0xFF, 0x00)) -> (170, 2, [171, 205])
parses first TLV format record in a list of bytelist returns a 3-Tuple: Tag, Length, Value Value is a list of bytes parsing of length is ETSI style 101.220

pySim.utils.get_addr_type(addr)
Validates the given address and returns it’s type (FQDN or IPv4 or IPv6) Return: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), None (Bad address argument given)

TODO: Handle IPv6

pySim.utils.h2b(s: str) → bytarray
convert from a string of hex nibbles to a sequence of bytes

pySim.utils.h2i(s: str) → List[int]
convert from a string of hex nibbles to a list of integers

pySim.utils.h2s(s: str) → str
convert from a string of hex nibbles to an ASCII string

pySim.utils.i2h(s: List[int]) → str
convert from a list of integers to a string of hex nibbles

pySim.utils.i2s(s: List[int]) → str
convert from a list of integers to an ASCII string

pySim.utils.is_hex(string: str, minlen: int = 2, maxlen: Optional[int] = None) → bool
Check if a string is a valid hexstring

pySim.utils.lpad(s: str, l: int, c=\'\') → str
pad string on the left side. :param s: string to pad :param l: total length to pad to :param c: padding character

Returns String ‘s’ padded with as many ‘c’ as needed to reach total length of ‘l’

pySim.utils.mcc_from_imsi(imsi: str) → Optional[str]
Derive the MCC (Mobile Country Code) from the first three digits of an IMSI

pySim.utils.mnc_from_imsi(imsi: str, long: bool = False) → Optional[str]
Derive the MNC (Mobile Country Code) from the 4th to 6th digit of an IMSI

pySim.utils.rpad(s: str, l: int, c=\'\') → str
pad string on the right side. :param s: string to pad :param l: total length to pad to :param c: padding character

Returns String ‘s’ padded with as many ‘c’ as needed to reach total length of ‘l’
osmopysim-usermanual

pySim.utils.s2h(s: str) → str
convert from an ASCII string to a string of hex nibbles

pySim.utils.sanitize_pin_adm(pin_adm, pin_adm_hex=None) → str
The ADM pin can be supplied either in its hexadecimal form or as ASCII string. This function checks the supplied opts parameter and returns the pin_adm as hex encoded string, regardless in which form it was originally supplied by the user.

pySim.utils.str sanitize(s: str) → str
replace all non printable chars, line breaks and whitespaces, with ' ', make sure that there are no whitespaces at the end and at the beginning of the string.

Parameters
s – string to sanitize

Returns filtered result of string ‘s’

pySim.utils.sw_match(sw: str, pattern: str) → bool
Match given SW against given pattern.

pySim.utils.swap_nibbles(s: str) → str
swap the nibbles in a hex string

pySim.utils.tabulate_str_list(str_list, width: int = 79, hspace: int = 2, lspace: int = 1, align_left: bool = True) → str
Pretty print a list of strings into a tabulated form.

Parameters

• width – total width in characters per line
• space – horizontal space between cells
• lspace – number of spaces before row
• align_left – Align text to the left side

Returns multi-line string containing formatted table

1.3.7 pySim exceptions

pySim: Exceptions

exception pySim.exceptions.NoCardError
No card was found in the reader.

exception pySim.exceptions.ProtocolError
Some kind of protocol level error interfacing with the card.

exception pySim.exceptions.ReaderError
Some kind of general error with the card reader.

exception pySim.exceptions.SwMatchError(sw_actual: str, sw_expected: str, rs=None)
Raised when an operation specifies an expected SW but the actual SW from the card doesn’t match.

Parameters

• sw_actual – the SW we actually received from the card (4 hex digits)
• sw_expected – the SW we expected to receive from the card (4 hex digits)
• rs – interpreter class to convert SW to string
1.3.8 pySim card_handler

PySim: card handler utilities. A ‘card handler’ is some method by which cards can be inserted/removed into the card reader. For normal smart card readers, this has to be done manually. However, there are also automatic card feeders.

class pySim.card_handler.CardHandler[sl: pySim.transport.LinkBase]

Manual card handler: User is prompted to insert/remove card from the reader.

class pySim.card_handler.CardHandlerAuto[sl: pySim.transport.LinkBase, config_file: str]

Automatic card handler: A machine is used to handle the cards.

class pySim.card_handler.CardHandlerBase[sl: pySim.transport.LinkBase]

Abstract base class representing a mechanism for card insertion/removal.

done()

Method called when pySim failed to program a card. Move card to ‘good’ batch.

error()

Method called when pySim failed to program a card. Move card to ‘bad’ batch.

get(first: bool = False)

Method called when pySim needs a new card to be inserted.

Parameters

\texttt{first} – set to true when the get method is called the first time. This is required to prevent blocking when a card is already inserted into the reader. The reader API would not recognize that card as “new card” until it would be removed and re-inserted again.

1.3.9 pySim card_key_provider

Obtaining card parameters (mostly key data) from external source.

This module contains a base class and a concrete implementation of obtaining card key material (or other card-individual parameters) from an external data source.

This is used e.g. to keep PIN/PUK data in some file on disk, avoiding the need of manually entering the related card-individual data on every operation with pySim-shell.

class pySim.card_key_provider.CardKeyProvider

Base class, not containing any concrete implementation.

abstract get(fields: List[str], key: str, value: str) → Dict[str, str]

Get multiple card-individual fields for identified card.

Parameters

\begin{itemize}
 \item \texttt{fields} – list of valid field names such as ‘ADM1’, ‘PIN1’, … which are to be obtained
 \item \texttt{key} – look-up key to identify card data, such as ‘ICCID’
 \item \texttt{value} – value for look-up key to identify card data
\end{itemize}

Returns dictionary of {field, value} strings for each requested field from ‘fields’

get_field(field: str, key: str = ‘ICCID’, value: str = ‘’) → Optional[str]

get a single field from CSV file using a specified key/value pair

class pySim.card_key_provider.CardKeyProviderCsv(filename: str)

Card key provider implementation that allows to query against a specified CSV file

Parameters \texttt{filename} – file name (path) of CSV file containing card-individual key/data

get(fields: List[str], key: str, value: str) → Dict[str, str]

Get multiple card-individual fields for identified card.
Parameters

- **fields** – list of valid field names such as ‘ADM1’, ‘PIN1’, … which are to be obtained
- **key** – look-up key to identify card data, such as ‘ICCID’
- **value** – value for look-up key to identify card data

Returns dictionary of {field, value} strings for each requested field from ‘fields’

```python
pySim.card_key_provider.card_key_provider_get(fields: str, key: str, value: str, provider_list: []) -> Dict[str, str]
```

Query all registered card data providers for card-individual [key] data.

Parameters

- **fields** – list of valid field names such as ‘ADM1’, ‘PIN1’, … which are to be obtained
- **key** – look-up key to identify card data, such as ‘ICCID’
- **value** – value for look-up key to identify card data
- **provider_list** – override the list of providers from the global default

Returns dictionary of {field, value} strings for each requested field from ‘fields’

```python
pySim.card_key_provider.card_key_provider_get_field(field: str, key: str, value: str, provider_list: [])
    -> Optional[str]
```

Query all registered card data providers for a single field.

Parameters

- **field** – name valid field such as ‘ADM1’, ‘PIN1’, … which is to be obtained
- **key** – look-up key to identify card data, such as ‘ICCID’
- **value** – value for look-up key to identify card data
- **provider_list** – override the list of providers from the global default

Returns dictionary of {field, value} strings for the requested field

```python
pySim.card_key_provider.card_key_provider_register(provider: pySim.card_key_provider.CardKeyProvider, provider_list: [])
```

Register a new card key provider.

Parameters

- **provider** – the to-be-registered provider
- **provider_list** – override the list of providers from the global default
CHAPTER TWO

INDICES AND TABLES

• genindex
• modindex
• search
python module index

p
pySim.card_handler, 49
pySim.card_key_provider, 49
pySim.commands, 36
pySim.construct, 40
pySim.exceptions, 48
pySim.filesystem, 25
pySim.tlv, 41
pySim.transport, 36
pySim.transport.calypso, 38
pySim.transport.modem_atcmd, 38
pySim.transport.pcs, 39
pySim.transport.serial, 39
pySim.utils, 42
INDEX

A
activate_file() (pySim.filesystem.RuntimeState method), 31
add_application_df() (pySim.filesystem.CardMF method), 29
add_file() (pySim.filesystem.CardDF method), 26
add_files() (pySim.filesystem.CardDF method), 27
add_files() (pySim.filesystem.CardModel class method), 29
all_subclasses() (in module pySim.utils), 44
apply_matching_models() (pySim.filesystem.CardModel static method), 29
argparse_add_reader_args() (in module pySim.transport), 38
auto_int() (in module pySim.utils), 44

B
b2h() (in module pySim.utils), 45
BcdAdapter (class in pySim.construct), 40
BER_TLV_IE (class in pySim.tlv), 41
bertlv_encode_len() (in module pySim.utils), 45
bertlv_encode_tag() (in module pySim.utils), 45
bertlv_parse_len() (in module pySim.utils), 45
bertlv_parse_one() (in module pySim.utils), 45
bertlv_parse_tag() (in module pySim.utils), 45
bertlv_parse_tag_raw() (in module pySim.utils), 45
BerTlvEF (class in pySim.filesystem), 25
BerTlvEF.ShellCommands (class in pySim.filesystem), 25
BitsRFU() (in module pySim.construct), 40
boxed_heading_str() (in module pySim.utils), 45
build_select_path_to() (pySim.filesystem.CardFile method), 28
BytesRFU() (in module pySim.construct), 40

C
calculate_luhn() (in module pySim.utils), 45
CalypsoSimLink (class in pySim.transport.calypso), 38
card_key_provider_get_field() (in module pySim.card_key_provider), 50
card_key_provider_get_field() (in module pySim.card_key_provider), 50
card_key_provider_register() (in module pySim.card_key_provider), 50
CardADF (class in pySim.filesystem), 26
CardApplication (class in pySim.filesystem), 26
CardCommand (class in pySim.utils), 42
CardCommandSet (class in pySim.utils), 42
CardDF (class in pySim.filesystem), 26
CardDF.ShellCommands (class in pySim.filesystem), 26
CardEF (class in pySim.filesystem), 27
CardFile (class in pySim.filesystem), 27
CardHandler (class in pySim.card_handler), 49
CardHandlerAuto (class in pySim.card_handler), 49
CardHandlerBase (class in pySim.card_handler), 49
CardKeyProvider (class in pySim.card_key_provider), 49
CardKeyProviderCsv (class in pySim.card_key_provider), 49
CardMF (class in pySim.filesystem), 28
CardModel (class in pySim.filesystem), 29
COMPR_TLV_IE (class in pySim.tlv), 41
comprehensiontlv_encode_tag() (in module pySim.utils), 45
comprehensiontlv_parse_tag() (in module pySim.utils), 45
comprehensiontlv_parse_tag_raw() (in module pySim.utils), 45
connect() (pySim.transport.calypso.CalypsoSimLink method), 38
connect() (pySim.transport.LinkBase method), 36
connect() (pySim.transport.modem_atcmd.ModemATCommandLink method), 38
connect() (pySim.transport.pcsc.PcscSimLink method), 39
connect() (pySim.transport.serial.SerialSimLink method), 39
CyclicEF (class in pySim.filesystem), 29

55
D

DataObject (class in pySim.utils), 42
DataObjectChoice (class in pySim.utils), 43
DataObjectCollection (class in pySim.utils), 43
DataObjectSequence (class in pySim.utils), 43
dec_addr_tlv() (in module pySim.utils), 45
dec_ePDGSelection() (in module pySim.utils), 46
dec_imsi() (in module pySim.utils), 46
dec_msisdn() (in module pySim.utils), 46
dec_spn() (in module pySim.utils), 46
dec_st() (in module pySim.utils), 46
decode() (pySim.utils.DataObject method), 42
decode() (pySim.utils.DataObjectChoice method), 43
decode() (pySim.utils.DataObjectCollection method), 43
decode() (pySim.utils.DataObjectSequence method), 43
decode_bin() (pySim.filesystem.TransparentEFShellCommands method), 35
decode_bin() (pySim.filesystem.TransRecEFShellCommands method), 35
decode_hex() (pySim.filesystem.TransparentEFShellCommands method), 35
decode_hex() (pySim.filesystem.TransRecEFShellCommands method), 35
decode_multi() (pySim.utils.DataObjectSequence method), 43
decode_record_bin() (pySim.filesystem.LinFixedEFSchellCommands method), 30
decode_record_bin() (pySim.filesystem.TransRecEFSchellCommands method), 34
decode_record_hex() (pySim.filesystem.LinFixedEFSchellCommands method), 30
decode_record_hex() (pySim.filesystem.TransRecEFSchellCommands method), 34
decode_select_response() (pySim.filesystem.CardFile method), 28
decode_select_response() (pySim.filesystem.CardMF method), 29
default() (pySim.utils.JsonEncoder method), 44
derive_mcc() (in module pySim.utils), 46
derive_milenage_opc() (in module pySim.utils), 46
derive_mmc() (in module pySim.utils), 46
disconnect() (pySim.transport.calypsocalypsosimLink method), 38
disconnect() (pySim.transport.modem_atcmd.ModemATCMLink method), 38
disconnect() (pySim.transport.pscs.PscsSimLink method), 39
disconnect() (pySim.transport.serial.SerialSimLink method), 39
do_decode_hex() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_decode_hex() (pySim.filesystem.TransRecEFSchellCommands method), 35
do_delete_data() (pySim.filesystem.BerTlvEFSchellCommands method), 25
do_edit_binary_decoded() (pySim.utils.DataObjectSequence method), 43
do_edit_binary_decoded() (pySim.filesystem.TransparentEFShellCommands method), 35
do_edit_binary_decoded() (pySim.filesystem.TransRecEFShellCommands method), 35
do_read_binary() (pySim.filesystem.TransparentEFShellCommands method), 35
do_read_binary() (pySim.filesystem.TransRecEFShellCommands method), 35
do_read_record() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_read_record() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_read_records() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_read_records() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_read_records() (pySim.filesystem.TransRecEFSchellCommands method), 30
do_read_records() (pySim.filesystem.TransRecEFSchellCommands method), 30
do_retrieve_data() (pySim.filesystem.BerTlvEFSchellCommands method), 25
do_retrieve_tags() (pySim.filesystem.BerTlvEFSchellCommands method), 26
do_set_data() (pySim.filesystem.BerTlvEFSchellCommands method), 26
do_update_binary() (pySim.filesystem.TransparentEFShellCommands method), 35
do_update_binary() (pySim.filesystem.TransparentEFShellCommands method), 35
do_update_binary() (pySim.filesystem.TransRecEFSchellCommands method), 30
do_update_record() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_update_record() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_update_record() (pySim.filesystem.LinFixedEFSchellCommands method), 30
do_update_record() (pySim.filesystem.LinFixedEFSchellCommands method), 30
done() (pySim.card_handler.CardHandlerBase method), 49

E

enc_addr_tlv() (in module pySim.utils), 46
ecc_ePDGSelection() (in module pySim.utils), 46
ecc_imsi() (in module pySim.utils), 46
ecc_msisdn() (in module pySim.utils), 46
ecc_plmm() (in module pySim.utils), 46
ecc_spn() (in module pySim.utils), 46
ecc_st() (in module pySim.utils), 47
encode() (pySim.utils.DataObjectSequence method), 43
encode_bin() (pySim.filesystem.TransparentEFShellCommands method), 35
encode_hex() (pySim.filesystem.TransparentEFShellCommands method), 35
encode_record_bin() (pySim.filesystem.LinFixedEFSchellCommands method), 31
Index
<table>
<thead>
<tr>
<th>Module/Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModemATCommandLink</td>
<td>(class in pySim.transport.modem_atcmd), 38</td>
</tr>
<tr>
<td>pySim.card_handler</td>
<td>module, 49</td>
</tr>
<tr>
<td>pySim.card_key_provider</td>
<td>module, 49</td>
</tr>
<tr>
<td>pySim.commands</td>
<td>module, 36</td>
</tr>
<tr>
<td>pySim.construct</td>
<td>module, 40</td>
</tr>
<tr>
<td>pySim.exceptions</td>
<td>module, 48</td>
</tr>
<tr>
<td>pySim.filesystem</td>
<td>module, 25</td>
</tr>
<tr>
<td>pySim.tlv</td>
<td>module, 41</td>
</tr>
<tr>
<td>pySim.transport</td>
<td>module, 36</td>
</tr>
<tr>
<td>pySim.transport.calypso</td>
<td>module, 38</td>
</tr>
<tr>
<td>pySim.transport.modem_atcmd</td>
<td>module, 38</td>
</tr>
<tr>
<td>pySim.transport.pcsc</td>
<td>module, 39</td>
</tr>
<tr>
<td>pySim.transport.serial</td>
<td>module, 39</td>
</tr>
<tr>
<td>pySim.utils</td>
<td>module, 42</td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_binary()</td>
<td>(pySim.filesystem.RuntimeState method), 31</td>
</tr>
<tr>
<td>read_binary_dec()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>read_record()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>read_record_dec()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>ReaderError</td>
<td>48</td>
</tr>
<tr>
<td>reset()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>reset_card()</td>
<td>(pySim.transport.calypso.CalypsoSimLink method), 38</td>
</tr>
<tr>
<td>reset_card()</td>
<td>(pySim.transport.LinkBase method), 36</td>
</tr>
<tr>
<td>reset_card()</td>
<td>(pySim.transport.modem_atcmd.ModemATCommandLink method), 38</td>
</tr>
<tr>
<td>reset_card()</td>
<td>(pySim.transport.pcsc.PcscSimLink method), 39</td>
</tr>
<tr>
<td>retrieve_data()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>retrieve_tags()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>Rpad</td>
<td>(class in pySim.construct), 40</td>
</tr>
<tr>
<td>rpad()</td>
<td>(in module pySim.utils), 47</td>
</tr>
<tr>
<td>RuntimeState</td>
<td>(class in pySim.filesystem), 31</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s2h()</td>
<td>(in module pySim.utils), 47</td>
</tr>
<tr>
<td>sanitize_pin_adm()</td>
<td>(in module pySim.utils), 48</td>
</tr>
<tr>
<td>select()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>select_file()</td>
<td>(pySim.filesystem.RuntimeState method), 32</td>
</tr>
<tr>
<td>send_apdu()</td>
<td>(pySim.transport.LinkBase method), 36</td>
</tr>
<tr>
<td>send_apdu_checksw()</td>
<td>(pySim.transport.LinkBase method), 36</td>
</tr>
<tr>
<td>send_apdu_constr()</td>
<td>(pySim.transport.LinkBase method), 37</td>
</tr>
<tr>
<td>send_apdu_constr_checksw()</td>
<td>(pySim.transport.LinkBase method), 37</td>
</tr>
<tr>
<td>send_apdu_raw()</td>
<td>(pySim.transport.LinkBase method), 37</td>
</tr>
<tr>
<td>SerialSimLink</td>
<td>(class in pySim.transport.serial), 39</td>
</tr>
<tr>
<td>set_data()</td>
<td>(pySim.filesystem.RuntimeState method), 33</td>
</tr>
<tr>
<td>set_sw_interpreter()</td>
<td>(pySim.transport.LinkBase method), 37</td>
</tr>
<tr>
<td>should_exist_for_services()</td>
<td>(pySim.filesystem.CardFile method), 28</td>
</tr>
<tr>
<td>status()</td>
<td>(pySim.filesystem.RuntimeState method), 33</td>
</tr>
<tr>
<td>str-sanitize()</td>
<td>(in module pySim.utils), 48</td>
</tr>
<tr>
<td>sw_match()</td>
<td>(in module pySim.utils), 48</td>
</tr>
<tr>
<td>swap_nibbles()</td>
<td>(in module pySim.utils), 48</td>
</tr>
<tr>
<td>SwMatchError</td>
<td>48</td>
</tr>
</tbody>
</table>
T

tabulate_str_list() (in module pySim.utils), 48
TL0_DataObject (class in pySim.utils), 44
TLV_IE (class in pySim.tlv), 41
TLV_IE_Collection (class in pySim.tlv), 41
TLV_parser() (in module pySim.utils), 44
TlvCollectionMeta (class in pySim.tlv), 41
TlvMeta (class in pySim.tlv), 41
to_bytes() (pySim.tlv.IE method), 41
to_bytes() (pySim.tlv.Transcodable method), 42
to_bytes() (pySim.utils.DataObject method), 42
to_bytes() (pySim.utils.TL0_DataObject method), 44
to_dict() (pySim.tlv.IE method), 41
to_dict() (pySim.utils.DataObject method), 43
to_ie() (pySim.tlv.IE method), 41
to_ie() (pySim.tlv.TLV_IE method), 41
to_tlv() (pySim.tlv.IE method), 41
to_tlv() (pySim.tlv.TLV_IE method), 41
to_tlv() (pySim.utils.DataObject method), 43
Transcodable (class in pySim.tlv), 42
TransparentEF (class in pySim.filesystem), 34
TransparentEF.ShellCommands (class in pySim.filesystem), 35
TransRecEF (class in pySim.filesystem), 33

U

unregister_cmds() (pySim.filesystem.RuntimeState method), 33
update_binary() (pySim.filesystem.RuntimeState method), 33
update_binary_dec() (pySim.filesystem.RuntimeState method), 33
update_record() (pySim.filesystem.RuntimeState method), 33
update_record_dec() (pySim.filesystem.RuntimeState method), 33

W

wait_for_card() (pySim.transport.calypso.CalypsoSimLink method), 38
wait_for_card() (pySim.transport.LinkBase method), 37
wait_for_card() (pySim.transport.modem_atcmd.ModemATCommandLink method), 38
wait_for_card() (pySim.transport.pcsc.PcscSimLink method), 39
wait_for_card() (pySim.transport.serial.SerialSimLink method), 39