<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March 2019</td>
<td>Initial version.</td>
<td>HW</td>
</tr>
<tr>
<td>2</td>
<td>December 2021</td>
<td>Update manual to osmo-remsim v1.0.0 (logging, command line arguments)</td>
<td>HW</td>
</tr>
</tbody>
</table>
Contents

1 Overview 1
 1.1 About this manual .. 1
 1.2 About osmo-remsim ... 1
 1.3 Credits .. 1
 1.4 osmo-remsim-server ... 1
 1.5 osmo-remsim-client .. 1
 1.6 osmo-remsim-bankd ... 2
 1.7 osmo-remsim-apitool ... 2
 1.8 RSPRO ... 2
 1.9 RSRES ... 2
 1.10 Security ... 2

2 osmo-remsim-server 3
 2.1 Running .. 3
 2.1.1 SYNOPSIS .. 3
 2.1.2 OPTIONS .. 3
 2.2 Logging ... 3
 2.3 RESTful/JSON Web API .. 3
 2.3.1 /api/backend/v1/clients .. 3
 2.3.2 /api/backend/v1/clients/:client_id 4
 2.3.3 /api/backend/v1/banks ... 4
 2.3.4 /api/backend/v1/banks/:bank_id 4
 2.3.5 /api/backend/v1/slotmaps ... 4
 2.3.6 /api/backend/v1/slotmaps/:slotmap_id 4
 2.3.7 /api/backend/v1/global-reset 4
 2.3.8 Examples .. 4

3 osmo-remsim-apitool 5
 3.1 Usage ... 5
 3.1.1 Listing connected clients ... 5
 3.1.2 Listing connected bankds .. 5
 3.1.3 Listing installed slotmaps ... 5
 3.1.4 Listing all information .. 6
 3.1.5 Creating a slotmap ... 6
 3.1.6 Deleting a slotmap ... 6
 3.1.7 Reset all state ... 6
1 Overview

1.1 About this manual

This manual should help you getting started with the osmo-remsim software. It will cover aspects of configuration and running osmo-remsim as well as some introduction about its internal architecture and external interfaces.

1.2 About osmo-remsim

osmo-remsim is a suite of software programs enabling physical/geographic separation of a cellular phone (or modem) on the one hand side and the SIM/USIM/ISIM card on the other side.

Using osmo-remsim, you can operate an entire fleet of modems/phones, as well as banks of SIM cards and dynamically establish or remove the connections between modems/phones and cards.

So in technical terms, it behaves like a proxy for the ISO 7816 smart card interface between the MS/UE and the UICC/SIM/USIM/ISIM. While originally designed to be used in context of cellular networks, there is nothing cellular specific in the system. It can therefore also be used with other systems that use contact based smart cards according to ISO 7816. Currently only the T=0 protocol with standard (non-extended) APDUs is supported. Both T=1 and extended APDU support can easily be added as a pure software update, should it be required at some future point.

1.3 Credits

osmo-remsim was originally developed by Harald Welte with contributions by Kevin Redon. It builds on top of pre-existing infrastructure of the Osmocom project, including the Osmocom SIMtrace project.

Development of osmo-remsim software was funded by GSMK and sysmocom.

1.4 osmo-remsim-server

The osmo-remsim-server is the central element of the osmo-remsim architecture. All other elements connect to it. It maintains the inventory of other network elements, as well as the list of slot-mappings, i.e. the relationship between each given physical card in a bank and each card emulator attached to a phone/modem.

The tasks of osmo-remsim-server include:

• accepting incoming TCP control connections from osmo-remsim-client and osmo-remsim-bankd instances
• providing a RESTful JSON interface for external application logic to

For more information, please see Section 2.

1.5 osmo-remsim-client

The osmo-remsim-client software is co-located next to the user of the card which traditionally is a phone or modem. However, there are other flavors of clients available, too. This is for example useful if existing software wants to interface remote smart cards, rather than those physically inserted into a local reader next to the PC running that application.

In the classic phone / modem use case, osmo-remsim-client typically runs on an [embedded] computer next to the phone/modem.

The tasks of osmo-remsim-client include:

• interaction with the user application. For phone/modem, that’s over USB with a device supported by the SIMtrace2 cardem firmware, which provides the physical interface to the phone/modem SIM interface (ISO 7816-3).
• establishing a TCP connection with the osmo-remsim-server, in order to enable the server to issue control commands
• under control of osmo-remsim-server, establishing a TCP connection to a osmo-remsim-bankd in order to connect a card physically located at the bankd.

osmo-remsim-client supports at this point only one phone/modem. If you have multiple phones/modems at one location, you can simply run multiple instances of osmo-remsim-client on the same system, one for each phone/modem.

For more information, please see [?].

1.6 osmo-remsim-bankd

The osmo-remsim-bankd software is co-located next to a bank of SIM cards.
The tasks of osmo-remsim-bankd include:

• interaction with the actual card reader hardware. At this point, only PC/SC based readers are supported, with 1 to 255 slots per reader.
• establishing a TCP connection with the osmo-remsim-server, in order to enable the server to issue control commands
• running a TCP server where TCP connections from osmo-remsim-client instances are accepted and handled.

For more information, please see Section 7.

1.7 osmo-remsim-apitool

The osmo-remsim-apitool utility is an optional tool that can be used to manually interface with the RSRES interface of osmo-remsim-server in absence of a back-end system managing this.

For more information, please see Section 3.

1.8 RSPRO

RSPRO is the *R*emote *S*IM *PRO*tocol. It is a binary protocol specified in ASN.1 which is spoken on any of the internal connections between osmo-remsim-client, osmo-remsim-bankd and osmo-remsim-server.

You can find more information about RSPRO in Section 9.

1.9 RSRES

RSRES is the *R*emote *S*IM *RES*T protocol. It is an interface offered by osmo-remsim-server towards external back-end application logic of the operator of an osmo-remsim network.

You can find more information about RSRES in Section 2.3.

1.10 Security

Warning
RSPRO, RSRES and their underlying transport layer both operate in plain-text. There is no authentication or encryption built into the protocol. It is assumed that the protocols are only spoken over trusted, controlled IP networks, such as inside a VPN or a closed / private corporate network.
2 osmo-remsim-server

2.1 Running

osmo-remsim-server currently has no command-line arguments. It will bind to INADDR_ANY and offer the following TCP ports:

- Port 9998 for the inbound control connections from osmo-remsim-client and osmo-remsim-bankd
- Port 9997 for the RESTful/JSON Web API (role: HTTP server)

It is intended to make these settings (IP addresses, ports) configurable in future versions.

2.1.1 SYNOPSIS

osmo-remsim-server [-h] [-V] [-d LOGOPT]

2.1.2 OPTIONS

-
 -h, --help
 Print a short help message about the supported options

-
 -V, --version
 Print the software version number

-
 -d, --debug LOGOPT
 Configure the logging verbosity, see Section 8.

2.2 Logging

osmo-remsim-server currently logs to stderr only; the logging verbosity is configurable via command line argument only. However, as the libosmocore logging framework is used, extending this is an easy modification.

2.3 RESTful/JSON Web API

osmo-remsim-server provides a RESTful/JSON WEB API for application logic integration. The purpose of the API is to allow run-time configuration and monitoring of the entire osmo-remsim system.

The API currently has version 1, and the URL prefix is /api/backend/v1

Warning

The RESTful/JSON Web API operates in plain-text, There is no authentication or encryption built into the protocol. It is assumed that the protocol is only spoken over trusted, controlled IP networks, such as inside a VPN or a closed / private corporate network.

2.3.1 /api/backend/v1/clients

GET obtains a JSON list where each element represents one currently connected osmo-remsim-client.

No other HTTP operation is implemented.
2.3.2 /api/backend/v1/clients/:client_id
GET obtains a single JSON object representing one specific currently connected osmo-remsim-client.
No other HTTP operation is implemented.

2.3.3 /api/backend/v1/banks
GET obtains a JSON list where each element represents one currently connected osmo-remsim-bankd.
No other HTTP operation is implemented.

2.3.4 /api/backend/v1/banks/:bank_id
GET obtains a single JSON object representing one specific currently connected osmo-remsim-bankd.
No other HTTP operation is implemented.

2.3.5 /api/backend/v1(slotmaps
GET obtains a JSON list where each element represents one provisioned slot mapping.
POST creates a new slot mapping as specified in the JSON syntax contained in the HTTP body.
No other HTTP operation is implemented.

2.3.6 /api/backend/v1(slotmaps/:slotmap_id
DELETE deletes a slot mapping by its identifier. If the mapping is currently in use, the related bankd is instructed to disconnect
the client from the card.
No other HTTP operation is implemented.

2.3.7 /api/backend/v1/global-reset
POST performs a global reset of the osmo-remsim-server state. This means all mappings are removed.

2.3.8 Examples

remsim-server is on 10.2.3.4, one simbank with 5 cards: http://10.2.3.4:9997/api/backend/v1/banks

```
{"banks":[{"peer":"B1","state":"CONNECTED_BANKD","component_id":{"type_":"remsimBankd","name":"fixme-name","software":"remsim-bankd","swVersion":"0.1.0.17-6d8a"},"bankId":1,"numberOfSlots":5}]
```

remsim-server is on 10.2.3.4, 4 clients: http://10.2.3.4:9997/api/backend/v1/clients

```
{"clients":[{"peer":"C0:2","state":"CONNECTED_CLIENT","component_id":{"type_":"remsimClient","name":"simtrace2-remsim-client","software":"remsim-client","swVersion":"0.1.0.17-6d8a"},{"peer":"C0:0","state":"CONNECTED_CLIENT","component_id":{"type_":"remsimClient","name":"simtrace2-remsim-client","software":"remsim-client","swVersion":"0.1.0.17-6d8a"},{"peer":"C0:3","state":"CONNECTED_CLIENT","component_id":{"type_":"remsimClient","name":"simtrace2-remsim-client","software":"remsim-client","swVersion":"0.1.0.17-6d8a"},{"peer":"C0:1","state":"CONNECTED_CLIENT","component_id":{"type_":"remsimClient","name":"simtrace2-remsim-client","software":"remsim-client","swVersion":"0.1.0.17-6d8a"}]}
```
3 osmo-remsim-apitool

osmo-remsim-apitool is a small python script which can be used to manually control osmo-remsim-server via its RESTful interface in setups where no external back-end application is controlling this interface.

For more information about the RESTful interface, see [?].

3.1 Usage

Common command line arguments that can be used with any of the commands below:

-H, --host HOST
Specify the hostname / IP of the osmo-remsim-server to connect to. Default: localhost

-P, --port PORT
Specify the remote TCP port of the RSRES interface of osmo-remsim-server. Default: 9997

-v, --verbose
Increase verbosity of output: Show the GET request generated, not just the response.

3.1.1 Listing connected clients

The command `osmo-remsim-apitool -c` can be used to list all currently connected clients.

```bash
$ osmo-remsim-apitool -c
/clients: [{'clients': [{'peer': 'C23:0', 'state': 'CONNECTED_CLIENT', 'component_id': {'type_': 'remsimClient', 'name': 'nataraja', 'software': 'remsim-client', 'swVersion': '0.2.2.63-844b'}]}]
```

3.1.2 Listing connected bankds

The command `osmo-remsim-apitool -b` can be used to list all currently connected bankds.

```bash
$ osmo-remsim-apitool -b
/banks: [{'banks': [{'peer': 'B1', 'state': 'CONNECTED_BANKD', 'component_id': {'type_': 'remsimBankd', 'name': 'fixme-name', 'software': 'remsim-bankd', 'swVersion': '0.2.2.46-3598'}, 'bankId': 1, 'numberOfSlots': 5}]}
```

3.1.3 Listing installed slotmaps

The command `osmo-remsim-apitool -s` can be used to list all currently installed slotmaps.

```bash
$ osmo-remsim-apitool -s
/slotmaps: [{'slotmaps': [{'bank': {'bankId': 1, 'slotNr': 1}, 'client': {'clientId': 23, 'slotNr': 0}, 'state': 'ACTIVE'}]}
```
3.1.4 Listing all information

The command `osmo-remsim-apitool -a` can be used to list all information (clients, bankds, slotmaps).

```
$ osmo-remsim-apitool -a
/clients: {'clients': [{'peer': 'C23:0', 'state': 'CONNECTED_CLIENT', 'component_id': {'type_': 'remsimClient', 'name': 'nataraja', 'software': 'remsim-client', 'swVersion': '0.2.2.63-844b'})]}
/banks: [{'peer': 'B1', 'state': 'CONNECTED_BANKD', 'component_id': {'type_': 'remsimBankd', 'name': 'fixme-name', 'software': 'remsim-bankd', 'swVersion': '0.2.2.46-3598'}, 'bankId': 1, 'numberOfSlots': 5}]
/slotmaps: [{'bank': {'bankId': 1, 'slotNr': 1}, 'client': {'clientId': 23, 'slotNr': 0}, 'state': 'ACTIVE'}]
```

3.1.5 Creating a slotmap

The command `osmo-remsim-apitool -m bank_id bankd_slot client_id client_slot` can be used to create a new slotmap.

Create a slotmap between Bankd 1 Slot a (B1:1) and Client 23 Slot 0 (C23:0)

```
$ osmo-remsim-apitool -m 1 1 23 0
```

3.1.6 Deleting a slotmap

The command `osmo-remsim-apitool -d bank_id bank_slot` can be used to create a new slotmap.

Remove a slotmap for Bankd 1 Slot a (B1:1)

```
$ osmo-remsim-apitool -d 1 1
```

3.1.7 Reset all state

The command `osmo-remsim-apitool -r` can be used to reset all state in bankd, including all slotmaps.

```
$ osmo-remsim-apitool -r
```

⚠️ Warning

Use with extreme caution, particularly in production environments.
4 osmo-remsim-client-st2

The client interfaces with GSM phones / modems via dedicated "Card Emulation" devices such as the Osmocom SIMtrace2 or sysmocom sysmoQMOD board + firmware. This hardware implements the ISO7816-3 electrical interface and protocol handling and passes any TPDU headers received from the phone/modem to osmo-remsim-client for further processing of the TPDUs associated to the given APDU transfer.

osmo-remsim-client connects via a RSPRO control connection to osmo-remsim-server at startup and registers itself. It will receive configuration data such as the osmo-remsim-bankd IP+Port and the ClientId from osmo-remsim-server.

After receiving the configuration, osmo-remsim-client will establish a RSPRO data connection to the osmo-remsim-bankd IP:Port.

As the USB interface for remote SIM in simtrace2.git uses one interface per slot, we can implement the client in blocking mode, i.e. use blocking I/O on the TCP/RSPRO side. This simplifies the code compared to a more complex async implementation.

Figure 1: Overall osmo-remsim architecture using osmo-remsim-client-st2

4.1 Running

osmo-remsim-client-st2 currently has the following command-line options:

4.1.1 SYNOPSIS

osmo-remsim-client-st2 [...]

4.1.2 OPTIONS

- h, --help
 Print a short help message about the supported options

- V, --version
 Print the software version number

- d, --debug LOGOPT
 Configure the logging verbosity, see Section 8.

- i, --server-ip A.B.C.D
 Specify the remote IP address / hostname of the osmo-remsim-server to which this client shall establish its RSPRO control connection

- p, --server-port <1-65535>
 Specify the remote TCP port number of the osmo-remsim-server to which this client shall establish its RSPRO control connection

- c, --client-id <1-1023>
 Specify the numeric client identifier of the SIM bank this bankd instance operates. The tuple of client-id and client-slot must be unique among all clients connecting to the same osmo-remsim-server.

- n, --client-slot <0-1023>
 Specify the slot number served within this client. The tuple of client-id and client-slot must be unique among all clients connecting to the same osmo-remsim-server.
-a, --atr HEXSTRING
Specify the initial ATR to be communicated to the modem/phone. Can and will later be overridden by the ATR as specified by `osmo-remsim-bankd` once a card has been mapped to this client, unless the `--atr-ignore-rspro` option is also specified.

-r, --atr-ignore-rspro
Ignore any incoming RSPRO setAtrReq and always only use the locally-specified ATR when communicating with the UE/modem/phone. This can be used to constrain the capabilities advertised. This way, for example, the baud rate can be constrained, or the use of logical channels prevented.

-e, --event-script COMMAND
Specify the shell command to be execute when the client wants to call its helper script

-V, --usb-vendor
Specify the USB Vendor ID of the USB device served by this client, use e.g. 0x1d50 for SIMtrace2, sysmoQMOD and OWHW.

-P, --usb-product
Specify the USB Product ID of the USB device served by this client, use e.g. 0x4004 for sysmoQMOD.

-C, --usb-config
Specify the USB Configuration number of the USB device served by this client. Default will use current configuration of the device.

-I, --usb-interface
Specify the USB Interface number (within active configuration) of the USB device served by this client. Default will use FIXME.

-S, --usb-altsetting
Specify the USB Alternate Setting to be used within the USB Interface of the USB device served by this client. Default will use FIXME.

-A, --usb-address <0-255>
Specify the USB Address of the USB device served by this client. This is useful in case multiple identical USB devices are attached to the same host. However, the address changed at every re-enumeration and it’s therefor recommended to use the USB path (see below).

-H, --usb-path
Specify the USB path of the USB device served by this client. This is usefule to disambiguate between multiple identical USB devices attached to the same host. You don’t need this if you have only one SIM emulation device attached to your system.

4.1.3 Examples
remsim-server is on 10.2.3.4, sysmoQMOD on usb bus, all 4 modems:

```
  osmo-remsim-client-st2 -s 10.2.3.4 -V 1d50 -P 4004 -C 1 -I 0 -H 2-1.1 -c 0 -n 0
  osmo-remsim-client-st2 -s 10.2.3.4 -V 1d50 -P 4004 -C 1 -I 1 -H 2-1.1 -c 0 -n 1
  osmo-remsim-client-st2 -s 10.2.3.4 -V 1d50 -P 4004 -C 1 -I 0 -H 2-1.4 -c 0 -n 2
  osmo-remsim-client-st2 -s 10.2.3.4 -V 1d50 -P 4004 -C 1 -I 1 -H 2-1.4 -c 0 -n 3
```

4.2 Logging
`osmo-remsim-client` currently logs to stdout only, and the logging verbosity is not yet configurable. However, as the libosmocore logging framework is used, extending this is an easy modification.
4.3 Helper Script

`osmo-remsim-client` can call an external shell command / script / program at specific instances of time. This serves two purposes:

- To keep external system integration posted about the overall status of remsim-client, such as whether or not it is connected to a server and/or bankd.
- To request the external system to perform specific actions, such as triggering the reset of the modem - in case the hardware doesn’t allow the simtrace2 firmware to do that itself.

4.3.1 Script Environment Variables

The environment passed to the helper script contains a number of variables to provide information to the external script:

Table 1: Environment Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Example Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMSIM_CLIENT_VERSION</td>
<td>0.2.2.37-5406a</td>
<td>Compile version of the software</td>
</tr>
<tr>
<td>REMSIM_SERVER_ADDR</td>
<td>1.2.3.4:1234</td>
<td>Address and port of the remsim-server</td>
</tr>
<tr>
<td>REMSIM_SERVER_STATE</td>
<td>CONNECTED</td>
<td>FSM state of the connection to remsim-server</td>
</tr>
<tr>
<td>REMSIM_BANKD_ADDR</td>
<td>1.2.3.4:1234</td>
<td>Address and port of the remsim-bankd</td>
</tr>
<tr>
<td>REMSIM_BANKD_STATE</td>
<td>CONNECTED</td>
<td>FSM state of the connection to remsim-bankd</td>
</tr>
<tr>
<td>REMSIM_CLIENT_SLOT</td>
<td>23:42</td>
<td>Client ID and Client Slot Number</td>
</tr>
<tr>
<td>REMSIM_BANKD_SLOT</td>
<td>55:33</td>
<td>Bank ID and Bank Slot Number</td>
</tr>
<tr>
<td>REMSIM_USB_PATH</td>
<td>2-1.1</td>
<td>USB path of the USB device with simtrace2 cardem firmware</td>
</tr>
<tr>
<td>REMSIM_USB_INTERFACE</td>
<td>1</td>
<td>Interface number of the USB device with simtrace2 cardem firmware</td>
</tr>
<tr>
<td>REMSIM_SIM_VCC</td>
<td>1</td>
<td>Whether or not the modem currently applies SIM VCC (0/1)</td>
</tr>
<tr>
<td>REMSIM_SIM_RST</td>
<td>1</td>
<td>Whether or not the modem currently asserts SIM RST (0=inactive, 1=active)</td>
</tr>
<tr>
<td>REMSIM_CAUSE</td>
<td>request-card-insert</td>
<td>The cause why this script has been called</td>
</tr>
</tbody>
</table>

4.3.2 REMSIM_CAUSE values

The REMSIM_CAUSE environment variable (as well as the first argument) passed to the helper script indicated why the script has been called.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event-modem-status</td>
<td>The SIM card interface status has changed (e.g. VCC/RST change)</td>
</tr>
<tr>
<td>event-bankd-connect</td>
<td>A logical RSPRO connection to a bankd has been established</td>
</tr>
<tr>
<td>event-server-connect</td>
<td>A logical RSPRO connection to a server has been established</td>
</tr>
<tr>
<td>event-config-bankd</td>
<td>The server has instructed the client of the bankd address</td>
</tr>
<tr>
<td>request-card-insert</td>
<td>The client asks the system to simulate SIM card insertion to the modem</td>
</tr>
<tr>
<td>request-card-remove</td>
<td>The client asks the system to simulate SIM card removal from the modem</td>
</tr>
<tr>
<td>request-sim-remote</td>
<td>The client asks the system to switch to remote SIM</td>
</tr>
<tr>
<td>request-sim-local</td>
<td>The client asks the system to switch to local SIM</td>
</tr>
<tr>
<td>request-modem-reset</td>
<td>The client asks the system to perform a modem reset</td>
</tr>
</tbody>
</table>
5 osmo-remsim-client-shell

This is a remsim-client that’s mostly useful for manual debugging/testing or automatic testing. Instead of using hardware like the SIMtrace with cardem firmware to interface a virtual SIM card to a real phone or modem, it simply offers an interactive way to exchange APDUs with a remote SIM card via STDIO of the process.

This allows testing of large parts of the osmo-remsim-client code as well as the integration with the overall osmo-remsim network including osmo-remsim-server, osmo-remsim-bankd and any external backend application driving the REST interface.

5.1 Running

osmo-remsim-client-shell currently has the following command-line options:

5.1.1 SYNOPSIS

```
osmo-remsim-client-shell [ . . . ]
```

5.1.2 OPTIONS

- `-h, --help`
 Print a short help message about the supported options

- `-v, --version`
 Print the compile-time version information

- `-d, --debug LOGOPT`
 Configure the logging verbosity, see Section 8.

- `-i, --server-ip A.B.C.D`
 Specify the remote IP address / hostname of the osmo-remsim-server to which this client shall establish its RSPRO control connection

- `-p, --server-port <1-65535>`
 Specify the remote TCP port number of the osmo-remsim-server to which this client shall establish its RSPRO control connection

- `-c, --client-id <1-1023>`
 Specify the numeric client identifier of the SIM bank this bankd instance operates. The tuple of client-id and client-slot must be unique among all clients connecting to the same osmo-remsim-server.

- `-n, --client-slot <0-1023>`
 Specify the slot number served within this client. The tuple of client-id and client-slot must be unique among all clients connecting to the same osmo-remsim-server. osmo-remsim-bankd once a card has been mapped to this client.

- `-e, --event-script COMMAND`
 Specify the shell command to be execute when the client wants to call its helper script

5.1.3 Examples

The below example uses stderr-redirection to avoid the log output cluttering the console.

```
remsim-server is at 192.168.11.10; we are client 23 slot 0
```
The first SET_ATR is performed by osmo-remsim-client locally using a default ATR.

The second SET_ATR is performed by osmo-remsim-bankd to inform us about the ATR of the real remote card.

The a0a40000023f00 is a command TPDU entered on STDIN by the user.

The 9f17 is a response TPDU provided by the remote card in response to the command.

The program continues in this loop (read command APDU as hex-dump from stdin; provide response on stdout) until it is terminated by Ctrl+C or by other means.

6 libifd_remsim_client

This is a remsim-client implemented as so-called ifd_handler, i.e. a card reader driver that plugs into the bottom side of the PC/SC daemon of pcsc-lite.

Using this library, you can use normal smart card application programs with remote smart cards managed by osmo-remsim. The setup looks like this:

```
./osmo-remsim-client-shell -i 192.168.11.10 -c 23 2>/dev/null
```

SET_ATR: 3b 00
SET_ATR: 3b 7d 94 00 00 55 53 0a 74 86 93 0b 24 7c 4d 54 68
a0a40000023f00
R-APDU: 9f 17

• The first SET_ATR is performed by osmo-remsim-client locally using a default ATR
• The second SET_ATR is performed by osmo-remsim-bankd to inform us about the ATR of the real remote card
• The a0a40000023f00 is a command TPDU entered on STDIN by the user
• The 9f17 is a response TPDU provided by the remote card in response to the command.

The program continues in this loop (read command APDU as hex-dump from stdin; provide response on stdout) until it is terminated by Ctrl+C or by other means.

6.1 Configuration

Like all non-USB PC/SC reader drivers, this is happening in /etc/reader.conf or, at least on Debian GNU/Linux based systems via files in /etc/reader.conf.d. The osmo-remsim software includes an example configuration file and installs it as osmo-remsim-client-reader_conf in that directory.

```
#FRIENDLYNAME "osmo-remsim-client"
#DEVICENAME 0:0:192.168.11.10:9998
#LIBPATH /usr/lib/pcsc/drivers/libifd-osmo-remsim-client.bundle/Contents/Linux/ ←
libifd_remsim_client.so
```

As you can see, all lines are commented out by default. In order to enable the remsim-client virtual reader, you need to

• remove the # character on all three lines
• configure the DEVICENAME according to your local configuration. It is a string with fields separated by colons, in the form of CLIENT_ID:CLIENT_SLOT:SERVER_IP:SERVER_PORT
 – First part is the Client ID (default: 0)
Second part is the Client SlotNumber (default: 0)
Third part is the IP address of the osmo-resim-server (default: localhost)
Last part is the RSPRO TCP port of the osmo-resim-server (default: 9998)

Once the configuration file has been updated, you should re-start pcsd by issuing `systemctl restart pcsd` or whatever command your Linux distribution uses for restarting services.

You can check if the driver is loaded by using the pcsc_scan tool included with pcsd:

```
$ pcsc_scan
Using reader plug’n play mechanism
Scanning present readers...
0: osmo-remsim-client 00 00

Wed Mar 4 13:31:42 2020
Reader 0: osmo-remsim-client 00 00
Event number: 0
Card state: Card removed,
```

Once a proper slotmap to an existing SIM card in a remote bank daemon has been installed in the server, you should see something like this:

```
$ pcsc_scan
Using reader plug’n play mechanism
Scanning present readers...
0: osmo-remsim-client 00 00

Wed Mar 4 13:35:18 2020
Reader 0: osmo-remsim-client 00 00
Event number: 1
Card state: Card inserted,
ATR: 3B 7D 94 00 00 55 55 53 0A 74 86 93 0B 24 7C 4D 54 68
ATR: 3B 7D 94 00 00 55 55 53 0A 74 86 93 0B 24 7C 4D 54 68
+ TS = 3B --> Direct Convention
+ T0 = 7D, Y(1): 0111, K: 13 (historical bytes)
TA(1) = 94 --> F1=512, Di=8, 64 cycles/ETU
62500 bits/s at 4 MHz, fMax for F1 = 5 MHz -> 78125 bits/s
TB(1) = 00 --> VPP is not electrically connected
TC(1) = 00 --> Extra guard time: 0
+ Historical bytes: 55 55 53 0A 74 86 93 0B 24 7C 4D 54 68
Category indicator byte: 55 (proprietary format)
Possibly identified card (using /home/laforge/.cache/smartcard_list.txt):
NONE
```

From now on, you can use any application using PC/SC, whether C, Python or Java with a remote SIM card managed by osmo-remsim.

osmo-remsim-bankd

The osmo-remsim-bankd (SIM Bank Daemon) manages one given SIM bank. The initial implementation supports a PC/SC driver to expose any PC/SC compatible card readers as SIM bank.
osmo-remsim-bankd initially connects via a RSPRO control connection to osmo-remsim-server at startup, and will in turn receive a set of initial [client,slot]:[bankd,slot] mappings. These mappings determine which slot on the client (corresponding to a modem) is mapped to which slot on the SIM bank. Mappings can be updated by osmo-remsim-server at any given point in time.

osmo-remsim-bankd implements a RSPRO server, where it listens to connections from osmo-remsim-clients. As PC/SC only offers a blocking API, there is one thread per PC/SC slot. This thread will perform blocking I/O on the socket towards the client, and blocking API calls on PC/SC.

In terms of thread handling, we do:

- accept() handling in [spare] worker threads
 - this means blocking I/O can be used, as each worker thread only has one TCP connection
 - client identifies itself with client:slot
 - lookup mapping based on client:slot (using mutex for protection)
 - open the reader based on the lookup result

The worker threads initially don’t have any mapping to a specific reader, and that mapping is only established at a later point after the client has identified itself. The advantage is that the entire bankd can live without any non-blocking I/O.

The main thread handles the connection to osmo-remsim-server, where it can also use non-blocking I/O. However, re-connection would be required, to avoid stalling all banks/cards in the event of a connection loss to the server.

worker threads have the following states: * INIT (just started) * ACCEPTING (they’re blocking in the accept() call on the server socket fd) * CONNECTED_WAIT_ID (TCP established, but peer not yet identified itself) * CONNECTED_CLIENT (TCP established, client has identified itself, no mapping) * CONNECTED_CLIENT_MAPPED (TCP established, client has identified itself, mapping exists) * CONNECTED_CLIENT_MAPPED_CARD (TCP established, client identified, mapping exists, card opened) * CONNECTED_SERVER (TCP established, server has identified itself)

Once the client disconnects, or any other error occurs (such as card I/O errors), the worker thread either returns to INIT state (closing client socket and reader), or it terminates. Termination would mean that the main thread would have to do non-blocking join to detect client termination and then re-spawn clients, so the "return to INIT state" approach seems to make more sense.

7.1 Running

osmo-remsim-bankd currently has the following command-line options:

7.1.1 SYNOPSIS

```
```

7.1.2 OPTIONS

- **-h, --help**
 Print a short help message about the supported options

- **-V, --version**
 Print the software version number

- **-d, --debug LOGOPT**
 Configure the logging verbosity, see Section 8.

- **-i, --server-host A.B.C.D**
 Specify the remote IP address/hostname of the osmo-remsim-server to which this bankd shall establish its RSPRO control connection

Copyright © 2019-2021 sysmocom - s.f.m.c. GmbH DRAFT 1.0.0-30-gf4be, 2022-Jul-24
-p, --server-port <1-65535>
Specify the remote TCP port number of the osmo-remsim-server to which this bankd shall establish its RSPRO control connection.

-b, --bank-id <1-1023>
Specify the numeric bank identifier of the SIM bank this bankd instance operates. Must be unique among all banks connecting to the same osmo-remsim-server.

-n, --num-slots <1-1023>
Specify the number of slots that this bankd handles.

-I, --bind-IP A.B.C.D
Specify the local IP address to which the socket for incoming connections from osmo-remsim-clients is bound to.

-P, --bind-port <1-65535>
Specify the local TCP port to which the socket for incoming connections from `osmo-remsim-client`'s is bound to.

-s, --permit-shared-pcsc
Specify whether the PC/SC readers should be accessed in SCARD_SHARE_SHARED mode, instead of the default (SCARD_SHARE_EXCLUSIVE). Shared mode would permit multiple application programs to access a single reader/slot/card concurrently. This is potentially dangerous as the two programs operate without knowledge of each other, and either of them might modify the card state (such as the currently selected file, validated PIN, etc.) in a way not expected by the other application.

7.1.3 Examples
remsim-server is on 10.2.3.4, cardreader has 5 slots:

```
osmo-remsim-bankd -i 10.2.3.4 -n 5
```

remsim-server is on 10.2.3.4, cardreader has 4 slots, local ip is 10.5.4.3

```
osmo-remsim-bankd -i 10.2.3.4 -n 4 -I 10.5.4.3
```

7.2 Logging

osmo-remsim-bankd currently logs to stdout only, and the logging verbosity is not yet configurable. However, as the libosmocore logging framework is used, extending this is an easy modification.

7.3 bankd_pcsc_slots.csv CSV file

bankd expects a CSV file bankd_pcsc_slots.csv in the current working directory at startup.

This CSV file specifies the mapping between the string names of the PCSC readers and the RSPRO bank/slot numbers. The format is as follows:

- first column: bankd number
- second column: slot number within bankd
- third column: extended POSIX regular expression matching the slot

Example: CSV file mapping bankd slots 0..4 to an ACS ACR33U-A1 reader slots
You can obtain the exact string to use as PC/SC reader name from the output of the `pcsc_scan` utility (part of pcsc-lite package). The tool will produce output like:

Example: Output of pcsc_scan utility on a system with a single reader installed

```
Scanning present readers...
0: Alcor Micro AU9560 00 00
```

In this example, there’s only a single PC/SC reader available, and it has a string of "Alcor Micro AU9560 00 00" which needs to be used in the CSV file.

NOTE

If the reader name contains any special characters, they might need to be escaped according to the extended POSIX regular expression syntax. See `man 7 regex` for a reference.

Example: CSV file mapping bankd slots 0..7 to a sysmocomOCTSIM:

```
"1","0","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 00"
"1","1","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 01"
"1","2","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 02"
"1","3","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 03"
"1","4","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 04"
"1","5","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 05"
"1","6","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 06"
"1","7","sysmocom sysmocomOCTSIM \[CCID\] \{ab19180f33353553202034463a15ff\} \{0-9\}\{2\} 07"
```

In the above example, the `\[CCID\]` and the `\{serialnumber\}` both had to be escaped. The `{0-9}\{2\}` construct exists to perform wildcard matching, no matter which particular two-digit number pcscd decides to use.

8 osmo-remsim logging

All programs within the osmo-remsim project use the logging sub-system of `libosmocore`.

Contrary to the larger Osmocom projects with their own VTY + configuration file, the logging configuration for osmo-remsim programs must happen via command line arguments.

Also, contrary to the larger Osmocom projects, only logging to `stderr` is supported; no direct logging to log files, syslog, systemd, etc. is supported at this point.

8.1 `-d` command line argument

Every osmo-remsim program like `osmo-remsim-bankd`, `osmo-remsim-server` or `osmo-remsim-client-st2` supports a `-d` command line argument. This argument takes one mandatory parameter configuring the log level for each log sub-system as follows:

```
-d SUBSYS,num_lvl[:SUBSYS,num_lvl[:...]]
```

So basically, a colon-separated list of tuples, where each tuple contains the sub-system name and the numeric log level.

Below is the list of sub-systems and a table of numerical levels:
Table 2: libosmocore log levels and their numeric values

<table>
<thead>
<tr>
<th>Level name</th>
<th>Numeric value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG</td>
<td>1</td>
</tr>
<tr>
<td>INFO</td>
<td>3</td>
</tr>
<tr>
<td>NOTICE</td>
<td>5</td>
</tr>
<tr>
<td>ERROR</td>
<td>7</td>
</tr>
<tr>
<td>FATAL</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3: osmo-remsim log sub-system names and their description

<table>
<thead>
<tr>
<th>Sub-System Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAIN</td>
<td>respective main program code</td>
</tr>
<tr>
<td>DST2</td>
<td>SIMtrace2 cardem firmware interaction via USB</td>
</tr>
<tr>
<td>DRSPRO</td>
<td>RSPRO protocol between bankd, server and client</td>
</tr>
<tr>
<td>DREST</td>
<td>REST interface of osmo-remsim-server</td>
</tr>
<tr>
<td>DSLOTMAP</td>
<td>slotmap code shared by osmo-remsim-server and osmo-remsim-bankd</td>
</tr>
<tr>
<td>DBANKDW</td>
<td>worker threads of osmo-remsim-bankd</td>
</tr>
</tbody>
</table>

8.2 Example

Putting the above in a concrete example:
-d DMAIN,5:DRSPRO,1
would perform the following configuration:

- log only NOTICE (or higher) messages in the DMAIN subsystem (low verbosity)
- log DEBUG (or higher) messages in the DRSPRO subsystem (very high verbosity)

9 RSPRO

RSPRO, the Remote SIM Protocol, is an osmo-remsim specific, non-standard communications protocol used between the elements of the osmo-remsim system.

It is specified in ASN.1 syntax (see asn1/RSPRO.asn in the osmo-remsim source code) and uses BER (Basic Encoding Rules) on the transport level.

Warning

RSPRO and its underlying transport layer both operate in plain-text. There is no authentication or encryption built into the protocol. It is assumed that the protocol is only spoken over trusted, controlled IP networks, such as inside a VPN or a closed / private corporate network.

Copyright © 2019-2021 sysmocom - s.f.m.c. GmbH

DRAFT 1.0.0-30-gf4be, 2022-Jul-24
9.1 Underlying Transport Layer

RSPRO uses TCP as an underlying transport protocol. As TCP doesn’t preserve message boundaries, the IPA multiplex is used as intermediate layer between TCP and the BER-encoded RSPRO PDU.

For more information about the IPA multiplex, see the related chapter in http://ftp.osmocom.org/docs/latest/osmobts-abis.pdf

RSPRO uses the IPA CCM PING/PONG messages for keep-alive and detection of dead/stale connections. The compiled-in defaults transmits one IPA PING every 30s and waits 10s for a response from the peer before declaring the connection as dead.

9.2 RSPRO PDU

An RsproPDU consists of:

- **version** of the protocol (v2 is current)
- **tag** specified by the sender, echoed back by the receiver in its response so the server can map responses back to a specific request
- **msg** the actual RSPRO Message (union/choice)

9.3 RSPRO Operations

Each RSPRO Operation typically (unless specified otherwise) consists of a Request and Response pair.

9.3.1 ConnectBank

This is used by remsim-bankd to identify itself to remsim-server and to establish a logical connection between the two elements.

9.3.2 ConnectClient

This is used by remsim-client to identify itself to remsim-server and to establish a logical connection between the two elements.

9.3.3 CreateMapping

This is used by remsim-server to install a slot mapping in a remsim-bankd.

9.3.4 RemoveMapping

This is used by remsim-server to remove a slot mapping from a remsim-bankd.

9.3.5 ConfigClientId

This is used by remsim-server to dynamically configure a ClientID in a remsim-client. This mode is currently not supported yet, each client must have a locally-configured ClientID.

9.3.6 ConfigClientBank

This is used by remsim-server to inform a remsim-client about the details (bankd ID, slot number, IP address, TCP port) of a the remsim-bankd to which it shall connect.
9.3.7 ErrorInd

This is a generic error indication that can be sent by any RSRPO entity.

9.3.8 SetAtr

This is used by `remsim-bankd` to inform the `remsim-client` about the ATR of the card, so that `remsim-client` can replicate that ATR when answering to the reset of the SIM card interface of the phone/modem.

9.3.9 TpduModemToCard

This is used by `remsim-client` to transfer a command TPDU/APDU from the phone/modem to the SIM card in `remsim-bankd`.

9.3.10 TpduCardToModem

This is used by `remsim-bankd` to transfer a response TPDU/APDU from the SIM card back to the phone/modem at `remsim-client`.

9.3.11 ClientSlotStatusInd

This is used by `remsim-client` to report the status of a given slot.

9.3.12 BankSlotStatusInd

This is used by `remsim-bankd` to report the status of a given slot.

10 Glossary

2FF

2nd Generation Form Factor; the so-called plug-in SIM form factor

3FF

3rd Generation Form Factor; the so-called microSIM form factor

3GPP

3rd Generation Partnership Project

4FF

4th Generation Form Factor; the so-called nanoSIM form factor

A Interface

Interface between BTS and BSC, traditionally over E1 (3GPP TS 48.008 [3gpp-ts-48-008])

A3/A8

Algorithm 3 and 8; Authentication and key generation algorithm in GSM and GPRS, typically COMP128v1/v2/v3 or MILENAGE are typically used

A5

Algorithm 5; Air-interface encryption of GSM; currently only A5/0 (no encryption), A5/1 and A5/3 are in use

Abis Interface

Interface between BTS and BSC, traditionally over E1 (3GPP TS 48.058 [3gpp-ts-48-058] and 3GPP TS 52.021 [3gpp-ts-52-021])
ACC
Access Control Class; every BTS broadcasts a bit-mask of permitted ACC, and only subscribers with a SIM of matching ACC are permitted to use that BTS

AGCH
Access Grant Channel on Um interface; used to assign a dedicated channel in response to RACH request

AGPL
GNU Affero General Public License, a copyleft-style Free Software License

AQPSK
Adaptive QPSK, a modulation scheme used by VAMOS channels on Downlink

ARFCN
Absolute Radio Frequency Channel Number; specifies a tuple of uplink and downlink frequencies

AUC
Authentication Center; central database of authentication key material for each subscriber

BCCH
Broadcast Control Channel on Um interface; used to broadcast information about Cell and its neighbors

BCC
Base Station Color Code; short identifier of BTS, lower part of BSIC

BTS
Base Transceiver Station

BSC
Base Station Controller

BSIC
Base Station Identity Code; 16bit identifier of BTS within location area

BSSGP
Base Station Subsystem Gateway Protocol (3GPP TS 48.018 [3gpp-ts-48-018])

BVCI
BSSGP Virtual Circuit Identifier

CBC
Cell Broadcast Centre; central entity of Cell Broadcast service

CBCH
Cell Broadcast Channel; used to transmit Cell Broadcast SMS (SMS-CB)

CBS
Cell Broadcast Service

CBSP
Cell Broadcast Service Protocol (3GPP TS 48.049 [3gpp-ts-48-049])

CC
Call Control; Part of the GSM Layer 3 Protocol

CCCH
Common Control Channel on Um interface; consists of RACH (uplink), BCCH, PCH, AGCH (all downlink)

Cell
A cell in a cellular network, served by a BTS

CEPT
Conférence européenne des administrations des postes et des télécommunications; European Conference of Postal and Telecommunications Administrations.
CGI
Cell Global Identifier comprised of MCC, MNC, LAC and BSIC

CSFB
Circuit-Switched Fall Back; Mechanism for switching from LTE/EUTRAN to UTRAN/GERAN when circuit-switched services such as voice telephony are required.

dB
deci-Bel; relative logarithmic unit

dBm
deci-Bel (milliwatt); unit of measurement for signal strength of radio signals

DHCP

downlink
Direction of messages / signals from the network core towards the mobile phone

DSCP
Differentiated Services Code Point ([IETF RFC 2474](https://datatracker.ietf.org/doc/html/rfc2474))

DSP
Digital Signal Processor

dvnxload
Tool to program UBL and the Bootloader on a sysmoBTS

EDGE
Enhanced Data rates for GPRS Evolution; Higher-speed improvement of GPRS; introduces 8PSK

EGPRS
Enhanced GPRS; the part of EDGE relating to GPRS services

EIR
Equipment Identity Register; core network element that stores and manages IMEI numbers

ESME
External SMS Entity; an external application interfacing with a SMSC over SMPP

ETSI
European Telecommunications Standardization Institute

FPGA
Field Programmable Gate Array; programmable digital logic hardware

Gb
Interface between PCU and SGSN in GPRS/EDGE network; uses NS, BSSGP, LLC

GERAN
GPRS/EDGE Radio Access Network

GFDL
GNU Free Documentation License; a copyleft-style Documentation License

GGSN
GPRS Gateway Support Node; gateway between GPRS and external (IP) network

GMSK
Gaussian Minimum Shift Keying; modulation used for GSM and GPRS

GPL
GNU General Public License, a copyleft-style Free Software License
Gp
Gp interface between SGSN and GGSN; uses GTP protocol

GPRS
General Packet Radio Service; the packet switched 2G technology

GPS
Global Positioning System; provides a highly accurate clock reference besides the global position

GSM
Global System for Mobile Communications. ETSI/3GPP Standard of a 2G digital cellular network

GSMTAP
GSM tap; pseudo standard for encapsulating GSM protocol layers over UDP/IP for analysis

GSUP
Generic subscriber Update Protocol. Osmocom-specific alternative to TCAP/MAP

GT
Global Title; an address in SCCP

GTP
GPRS Tunnel Protocol; used between SGSN and GGSN

HLR
Home Location Register; central subscriber database of a GSM network

HNB-GW
Home NodeB Gateway. Entity between femtocells (Home NodeB) and CN in 3G/UMTS.

HPLMN
Home PLMN; the network that has issued the subscriber SIM and has his record in HLR

IE
Information Element

IMEI
International Mobile Equipment Identity; unique 14-digit decimal number to globally identify a mobile device, optionally with a 15th checksum digit

IMEISV
IMEI software version; unique 14-digit decimal number to globally identify a mobile device (same as IMEI) plus two software version digits (total digits: 16)

IMSI
International Mobile Subscriber Identity; 15-digit unique identifier for the subscriber/SIM; starts with MCC/MNC of issuing operator

IP
Internet Protocol ([IETF RFC 791](https://www.ietf.org/rfc/rfc791))

IPA
ip.access GSM over IP protocol; used to multiplex a single TCP connection

Iu
Interface in 3G/UMTS between RAN and CN

IuCS
Iu interface for circuit-switched domain. Used in 3G/UMTS between RAN and MSC

IuPS
Iu interface for packet-switched domain. Used in 3G/UMTS between RAN and SGSN

Copyright © 2019-2021 sysmocom - s.f.m.c. GmbH

DRAFT 1.0.0-30-gf4be, 2022-Jul-24
LAC
Location Area Code; 16bit identifier of Location Area within network

LAPD
Link Access Protocol, D-Channel (ITU-T Q.921 [itu-t-q921])

LAPDm
Link Access Protocol Mobile (3GPP TS 44.006 [3gpp-ts-44-006])

LLC
Logical Link Control; GPRS protocol between MS and SGSN (3GPP TS 44.064 [3gpp-ts-44-064])

Location Area
Location Area; a geographic area containing multiple BTS

LU
Location Updating; can be of type IMSI-Attach or Periodic. Procedure that indicates a subscriber’s physical presence in a given radio cell.

M2PA
MTP2 Peer-to-Peer Adaptation; a SIGTRAN Variant (RFC 4165 [ietf-rfc4165])

M2UA
MTP2 User Adaptation; a SIGTRAN Variant (RFC 3331 [ietf-rfc3331])

M3UA
MTP3 User Adaptation; a SIGTRAN Variant (RFC 4666 [ietf-rfc4666])

MCC
Mobile Country Code; unique identifier of a country, e.g. 262 for Germany

MFF
Machine-to-Machine Form Factor; a SIM chip package that is soldered permanently onto M2M device circuit boards.

MGW
Media Gateway

MM
Mobility Management; part of the GSM Layer 3 Protocol

MNC
Mobile Network Code; identifies network within a country; assigned by national regulator

MNCC
Mobile Network Call Control; Unix domain socket based Interface between MSC and external call control entity like osmo-sip-connector

MNO
Mobile Network Operator; operator with physical radio network under his MCC/MNC

MO
Mobile Originated. Direction from Mobile (MS/UE) to Network

MS
Mobile Station; a mobile phone / GSM Modem

MSC
Mobile Switching Center; network element in the circuit-switched core network

MSC pool
A number of redundant MSCs serving the same core network, which a BSC / RNC distributes load across; see also the “MSC Pooling” chapter in OsmoBSC’s user manual [userman-osmobsc] and 3GPP TS 23.236 [3gpp-ts-23-236]
MSISDN
 Mobile Subscriber ISDN Number; telephone number of the subscriber

MT
 Mobile Terminated. Direction from Network to Mobile (MS/UE)

MTP
 Message Transfer Part; SS7 signaling protocol *(ITU-T Q.701)*

MVNO
 Mobile Virtual Network Operator; Operator without physical radio network

NCC
 Network Color Code; assigned by national regulator

NITB
 Network In The Box; combines functionality traditionally provided by BSC, MSC, VLR, HLR, SMSC functions; see OsmoNITB

NRI
 Network Resource Indicator, typically 10 bits of a TMSI indicating which MSC of an MSC pool attached the subscriber; see also the "MSC Pooling" chapter in OsmoBSC’s user manual [userman-osmobsc] and 3GPP TS 23.236 [3gpp-ts-23-236]

NSEI
 NS Entity Identifier

NVCI
 NS Virtual Circuit Identifier

NWL
 Network Listen; ability of some BTS to receive downlink from other BTSs

NS
 Network Service; protocol on Gb interface *(3GPP TS 48.016)*

OCXO
 Oven Controlled Crystal Oscillator; very high precision oscillator, superior to a VCTCXO

OML
 Operation & Maintenance Link (ETSI/3GPP TS 52.021) [3gpp-ts-52-021]

OpenBSC
 Open Source implementation of GSM network elements, specifically OsmoBSC, OsmoNITB, OsmoSGSN

OpenGGSN
 Open Source implementation of a GPRS Packet Control Unit

OpenVPN
 Open-Source Virtual Private Network; software employed to establish encrypted private networks over untrusted public networks

Osmocom
 Open Source MObile COMmunications; collaborative community for implementing communications protocols and systems, including GSM, GPRS, TETRA, DECT, GMR and others

OsmoBSC
 Open Source implementation of a GSM Base Station Controller

OsmoNITB
 Open Source implementation of a GSM Network In The Box, combines functionality traditionally provided by BSC, MSC, VLR, HLR, AUC, SMSC
OsmoSGSN
Open Source implementation of a Serving GPRS Support Node

OsmoPCU
Open Source implementation of a GPRS Packet Control Unit

OTA
Over-The-Air; Capability of operators to remotely reconfigure/reprogram ISM/USIM cards

PC
Point Code; an address in MTP

PCH
Paging Channel on downlink Um interface; used by network to page an MS

PCP
Priority Code Point (IEEE 802.1Q)

PCU
Packet Control Unit; used to manage Layer 2 of the GPRS radio interface

PDCH
Packet Data Channel on Um interface; used for GPRS/EDGE signalling + user data

PIN
Personal Identification Number; a number by which the user authenticates to a SIM/USIM or other smart card

PLMN
Public Land Mobile Network; specification language for a single GSM network

PUK
PIN Unblocking Code; used to unblock a blocked PIN (after too many wrong PIN attempts)

RAC
Routing Area Code; 16bit identifier for a Routing Area within a Location Area

RACH
Random Access Channel on uplink Um interface; used by MS to request establishment of a dedicated channel

RAM
Remote Application Management; Ability to remotely manage (install, remove) Java Applications on SIM/USIM Card

RF
Radio Frequency

RFM
Remote File Management; Ability to remotely manage (write, read) files on a SIM/USIM card

Roaming
Procedure in which a subscriber of one network is using the radio network of another network, often in different countries; in some countries national roaming exists

Routing Area
Routing Area; GPRS specific sub-division of Location Area

RR
Radio Resources; Part of the GSM Layer 3 Protocol

RSL
Radio Signalling Link (3GPP TS 48.058 [3gpp-ts-48-058])

RTP
Real-Time Transport Protocol (IETF RFC 3550 [ietf-rfc3550]); Used to transport audio/video streams over UDP/IP
SACCH
Slow Associate Control Channel on Um interface; bundled to a TCH or SDCCH, used for signalling in parallel to active dedicated channel

SCCP
Signaling Connection Control Part; SS7 signaling protocol (ITU-T Q.711 [itu-t-q711])

SDCCH
Slow Dedicated Control Channel on Um interface; used for signalling and SMS transport in GSM

SDK
Software Development Kit

SGs
Interface between MSC (GSM/UMTS) and MME (LTE/EPC) to facilitate CSFB and SMS.

SGSN
Serving GPRS Support Node; Core network element for packet-switched services in GSM and UMTS.

SIGTRAN
Signaling Transport over IP (IETF RFC 2719 [ietf-rfc2719])

SIM
Subscriber Identity Module; small chip card storing subscriber identity

Site
A site is a location where one or more BTSs are installed, typically three BTSs for three sectors

SMPP
Short Message Peer-to-Peer; TCP based protocol to interface external entities with an SMSC

SMSC
Short Message Service Center; store-and-forward relay for short messages

SS7
Signaling System No. 7; Classic digital telephony signaling system

SS
Supplementary Services; query and set various service parameters between subscriber and core network (e.g. USSD, 3rd-party calls, hold/retrieve, advice-of-charge, call deflection)

SSH
Secure Shell; IETF RFC 4250 [ietf-rfc4251] to 4254

SSN
Sub-System Number; identifies a given SCCP Service such as MSC, HLR

STP
Signaling Transfer Point; A Router in SS7 Networks

SUA
SCCP User Adaptation; a SIGTRAN Variant (RFC 3868 [ietf-rfc3868])

syslog
System logging service of UNIX-like operating systems

System Information
A set of downlink messages on the BCCH and SACCH of the Um interface describing properties of the cell and network

TCH
Traffic Channel; used for circuit-switched user traffic (mostly voice) in GSM

TCP
Transmission Control Protocol; (IETF RFC 793 [ietf-rfc793])
TFTP
Trivial File Transfer Protocol; ([IETF RFC 1350](ietf-rfc1350))

TOS
Type Of Service; bit-field in IPv4 header, now re-used as DSCP ([IETF RFC 791](ietf-rfc791))

TRX
Transceiver; element of a BTS serving a single carrier

TS
Technical Specification

u-Boot
Boot loader used in various embedded systems

UBI
An MTD wear leveling system to deal with NAND flash in Linux

UBL
Initial bootloader loaded by the TI Davinci SoC

UDP
User Datagram Protocol ([IETF RFC 768](ietf-rfc768))

UICC
Universal Integrated Chip Card; A smart card according to ETSI TR 102 216 ([etsi-tr102216])

Um interface
U mobile; Radio interface between MS and BTS

uplink
Direction of messages: Signals from the mobile phone towards the network

USIM
Universal Subscriber Identity Module; application running on a UICC to provide subscriber identity for UMTS and GSM networks

USSD
Unstructured Supplementary Service Data; textual dialog between subscriber and core network, e.g. *100 → Your extension is 1234

VAMOS
Voice services over Adaptive Multi-user channels on One Slot; an optional extension for GSM specified in Release 9 of 3GPP GERAN specifications ([3GPP TS 48.018](3gpp-ts-48-018)) allowing two independent UEs to transmit and receive simultaneously on traffic channels

VCTCXO
Voltage Controlled, Temperature Compensated Crystal Oscillator; a precision oscillator, superior to a classic crystal oscillator, but inferior to an OCXO

VLAN
Virtual LAN in the context of Ethernet ([IEEE 802.1Q](ieee-802.1q))

VLR
Visitor Location Register; volatile storage of attached subscribers in the MSC

VPLMN
Visited PLMN; the network in which the subscriber is currently registered; may differ from HPLMN when on roaming

VTY
Virtual Teletype; a textual command-line interface for configuration and introspection, e.g. the OsmoBSC configuration file as well as its telnet link on port 4242
A Bibliography / References

A.0.0.0.1 References

[64] [etsi-ts102221] ETSI TS 102 221: Smart Cards; UICC-Terminal interface; Physical and logical characteristics https://www.etsi.org/deliver/etsi_ts/102200_102299/102221/13.01.00_60/ts_102221v130100p.pdf

[65] [etsi-ts101220] ETSI TS 101 220: Smart Cards; ETSI numbering system for telecommunication application providers https://www.etsi.org/deliver/etsi_ts/101200_101299/101220/12.00.00_60/ts_101220v120000p.pdf

[66] [ieee-802.1q] IEEE 802.1Q: Bridges and Bridged Networks https://ieeexplore.ieee.org/document/6991462

[90] [freeswitch_pb] FreeSWITCH SIP PBX https://freeswitch.org
B GNU Free Documentation License

Version 1.3, 3 November 2008

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

B.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation:
a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is instruction or reference.

B.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or
with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship
of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Section whose titles are designated, as being those of Invariant Sections, in the
notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then
it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that
says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available
to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
Transparent is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, Title Page means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

B.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section Section B.4.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

B.4 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

B.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
a. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

b. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

c. State on the Title Page the name of the publisher of the Modified Version, as the publisher.

d. Preserve all the copyright notices of the Document.

e. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

f. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

g. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

h. Include an unaltered copy of this License.

i. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

j. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

k. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

l. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

m. Delete any section Entitled “Endorsements”. Such a section may not be included in the [?].

n. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Sections.

o. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Section and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
B.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”; and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

B.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

B.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

B.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

B.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

B.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

B.12 RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

B.13 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with... Texts.” line with this:

```latex
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
```

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.